論文の概要: The Amenability Framework: Rethinking Causal Ordering Without Estimating Causal Effects
- arxiv url: http://arxiv.org/abs/2206.12532v7
- Date: Tue, 08 Apr 2025 03:03:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:27:22.141846
- Title: The Amenability Framework: Rethinking Causal Ordering Without Estimating Causal Effects
- Title(参考訳): Amenability Framework: 因果効果を見積もることなく因果順序付けを再考する
- Authors: Carlos Fernández-Loría, Jorge Loría,
- Abstract要約: 本研究では、介入効果による個人格付けにおける因果効果推定値よりも予測モデルの方が優れていることを示す。
我々のフレームワークは、効果を見積もるから、予測可能な人を推測するへと焦点を移すことを示唆している。
- 参考スコア(独自算出の注目度): 1.6114012813668932
- License:
- Abstract: Who should we prioritize for intervention when we cannot estimate intervention effects? In many applied domains -- such as advertising, customer retention, and behavioral nudging -- prioritization is guided by predictive models that estimate outcome probabilities rather than causal effects. This paper investigates when these predictions (scores) can effectively rank individuals by their intervention effects, particularly when direct effect estimation is infeasible or unreliable. We propose a conceptual framework based on amenability -- an individual's latent proclivity to be influenced by an intervention -- and formalize conditions under which predictive scores serve as effective proxies for amenability. These conditions justify using non-causal scores for intervention prioritization, even when the scores do not directly estimate effects. We further show that, under plausible assumptions, predictive models can outperform causal effect estimators in ranking individuals by intervention effects. Empirical evidence from an advertising context supports our theoretical findings, demonstrating that predictive modeling can offer a more robust approach to targeting than effect estimation. Our framework suggests a shift in focus -- from estimating effects to inferring who is amenable -- as a practical and theoretically grounded strategy for prioritizing interventions in resource-constrained environments.
- Abstract(参考訳): 介入効果を見積もれない場合には、介入を優先すべきは誰か?
広告、顧客の維持、行動ヌードといった多くの適用領域において、優先順位付けは因果効果ではなく結果の確率を推定する予測モデルによって導かれる。
本稿では、これらの予測(スコア)が介入効果によって効果的に個人をランク付けできるか、特に直接的な効果推定が不可能であるか、信頼できないかを考察する。
本研究では、介入の影響を受けやすい個人の潜伏傾向であるアメナビリティに基づく概念的枠組みを提案し、予測スコアがアメナビリティの効果的なプロキシとして機能する条件を定式化する。
これらの条件は、スコアが直接効果を見積もらない場合でも、介入優先順位付けのために非因果スコアを使用することを正当化する。
さらに、妥当な仮定の下では、予測モデルは介入効果によって個人をランク付けする因果効果推定器よりも優れていることを示す。
広告の文脈から得られた実証的な証拠は、予測モデリングが効果推定よりもより堅牢なターゲティングアプローチを提供することを示す理論的な知見を支持している。
当社の枠組みは,資源制約環境における介入の優先順位付けを実践的かつ理論的に基礎とした戦略として,効果推定から推測への焦点転換を示唆している。
関連論文リスト
- Performative Prediction on Games and Mechanism Design [69.7933059664256]
エージェントが過去の正確性に基づいて予測を信頼するかを判断する集団リスクジレンマについて検討する。
予測が集合的な結果を形成するにつれて、社会福祉は関心の指標として自然に現れる。
よりよいトレードオフを実現し、それらをメカニズム設計に使用する方法を示します。
論文 参考訳(メタデータ) (2024-08-09T16:03:44Z) - Causal Fine-Tuning and Effect Calibration of Non-Causal Predictive Models [1.3124513975412255]
本稿では,無作為な実験データを用いた因果推論のための非因果モデルの性能向上手法を提案する。
広告、顧客の保持、精密医療のような領域では、介入なしの結果を予測する非因果モデルはしばしば、介入の期待された効果に応じて個人をスコアしランク付けするために使用される。
論文 参考訳(メタデータ) (2024-06-13T20:18:16Z) - Automating the Selection of Proxy Variables of Unmeasured Confounders [16.773841751009748]
既存のプロキシ変数推定器を拡張して、治療と結果の間に複数の未測定の共同創設者が存在するシナリオに対応する。
本稿では、プロキシ変数の選択と因果効果の偏りのない推定のための2つのデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T08:53:49Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
大規模言語モデル(LLM)は意思決定タスクを自動化するために使用される。
本稿では,LPMが介入に応じてデータ生成プロセスの知識を正確に更新できるかどうかを評価する。
さまざまな因果グラフ(例えば、コンバウンディング、仲介)と変数タイプにまたがるベンチマークを作成します。
これらのベンチマークにより、LLMが事実を記憶したり、他のショートカットを見つけたりすることで、変化を正確に予測する能力を切り離すことができます。
論文 参考訳(メタデータ) (2024-04-08T14:15:56Z) - On the Actionability of Outcome Prediction [8.32379926107182]
実践者は、最終的な目標は単に予測するのではなく、効果的に行動することだと認識します。
正確な結果の予測は、いつ最も適切な介入を特定するのに役立つのでしょうか?
結果を改善するための単一の決定的な行動がある場合を除き、結果予測は「行動価値」を最大化しない。
論文 参考訳(メタデータ) (2023-09-08T17:57:31Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
因果媒介分析(英: Causal mediation analysis)は、直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習はメディエーション分析において有望であるが、現在の手法では、治療、メディエーター、結果に同時に影響を及ぼす潜在的共同創設者のみを前提としている。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
論文 参考訳(メタデータ) (2023-02-19T23:37:17Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。