論文の概要: Distilling a Pretrained Language Model to a Multilingual ASR Model
- arxiv url: http://arxiv.org/abs/2206.12638v1
- Date: Sat, 25 Jun 2022 12:36:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-03 06:28:52.836623
- Title: Distilling a Pretrained Language Model to a Multilingual ASR Model
- Title(参考訳): 事前学習した言語モデルを多言語asrモデルに蒸留する
- Authors: Kwanghee Choi, Hyung-Min Park
- Abstract要約: 教師のテキストモデルに埋め込まれた豊富な知識を学生の音声モデルに蒸留する。
我々は,100時間未満の音声データを持つCommonVoiceデータセットの低リソース言語20言語に対して,本手法の優位性を示す。
- 参考スコア(独自算出の注目度): 3.4012007729454816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual speech data often suffer from long-tailed language distribution,
resulting in performance degradation. However, multilingual text data is much
easier to obtain, yielding a more useful general language model. Hence, we are
motivated to distill the rich knowledge embedded inside a well-trained teacher
text model to the student speech model. We propose a novel method called the
Distilling a Language model to a Speech model (Distill-L2S), which aligns the
latent representations of two different modalities. The subtle differences are
handled by the shrinking mechanism, nearest-neighbor interpolation, and a
learnable linear projection layer. We demonstrate the effectiveness of our
distillation method by applying it to the multilingual automatic speech
recognition (ASR) task. We distill the transformer-based cross-lingual language
model (InfoXLM) while fine-tuning the large-scale multilingual ASR model
(XLSR-wav2vec 2.0) for each language. We show the superiority of our method on
20 low-resource languages of the CommonVoice dataset with less than 100 hours
of speech data.
- Abstract(参考訳): 多言語音声データはしばしば長い尾の言語分布に悩まされ、性能が低下する。
しかし、多言語テキストデータを得るのがずっと簡単であり、より有用な汎用言語モデルとなる。
そこで我々は,教師テキストモデルに組み込まれた豊富な知識を,生徒の発話モデルに蒸留する動機付けを行っている。
本稿では,2つのモードの潜在表現を一致させる音声モデル(Distilling a Language model to a Speech model, Distill-L2S)を提案する。
微妙な違いは縮小機構、近距離補間、学習可能な線形投影層によって処理される。
本稿では,多言語自動音声認識(ASR)タスクに適用することで,蒸留法の有効性を示す。
各言語に対して大規模多言語ASRモデル(XLSR-wav2vec 2.0)を微調整しながらトランスフォーマーに基づく言語間言語モデル(InfoXLM)を蒸留する。
我々は,100時間未満の音声データを持つCommonVoiceデータセットの低リソース言語20言語に対して,本手法の優位性を示す。
関連論文リスト
- Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
利用可能なデータセットを用いた多言語ALTシステムの構築を目指している。
英語のALTに有効であることが証明されたアーキテクチャにヒントを得て,これらの手法を多言語シナリオに適用する。
単言語モデルと比較して,多言語モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-06-25T15:02:32Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - DistilXLSR: A Light Weight Cross-Lingual Speech Representation Model [16.31307448314024]
蒸留言語間音声表現モデルであるDistilXLSRを提案する。
既存の音声の音素をランダムにシャッフルすることにより、言語情報を減らし、英語データのみを用いて言語間モデルを蒸留する。
本手法は,様々な言語/教師モデルに対して一般化可能であることが証明され,英語事前学習モデルの言語間性能を向上させる可能性がある。
論文 参考訳(メタデータ) (2023-06-02T07:03:06Z) - Adapting Multilingual Speech Representation Model for a New,
Underresourced Language through Multilingual Fine-tuning and Continued
Pretraining [2.3513645401551333]
既存の多言語wav2vec 2.0モデルを新しい言語に適用する可能性を検討する。
この結果から, 継続事前学習がwav2vec 2.0モデルを新しい言語に適応させる最も効果的な方法であることが示唆された。
関連言語の種類や類似した音韻特性を持つ非関連言語で事前訓練されたモデルが利用可能である場合,その言語からの付加データを用いた多言語微調整は,音声認識性能に肯定的な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-01-18T03:57:53Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Magic dust for cross-lingual adaptation of monolingual wav2vec-2.0 [7.378368959253632]
モノリンガルなwav2vec-2.0は、いくつかの言語でASR学習者として優れていることを示す。
この研究の重要な発見は、適応されたモノリンガルwav2vec-2.0が、トップラインのマルチリンガルXLSRモデルと同様のパフォーマンスを達成することである。
論文 参考訳(メタデータ) (2021-10-07T15:29:22Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。