論文の概要: Latent Augmentation For Better Graph Self-Supervised Learning
- arxiv url: http://arxiv.org/abs/2206.12933v1
- Date: Sun, 26 Jun 2022 17:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 15:57:47.437317
- Title: Latent Augmentation For Better Graph Self-Supervised Learning
- Title(参考訳): グラフ自己教師付き学習の潜在強化
- Authors: Jiashun Cheng, Man Li, Jia Li, Fugee Tsung
- Abstract要約: 我々は、潜在的な拡張と強力なデコーダを備えた予測モデルは、対照的なモデルよりも同等またはそれ以上の表現力を達成することができると論じている。
Wiener Graph Deconvolutional Networkと呼ばれる新しいグラフデコーダは、拡張潜在表現から情報再構成を行うように設計されている。
- 参考スコア(独自算出の注目度): 20.082614919182692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph self-supervised learning has been vastly employed to learn
representations from unlabeled graphs. Existing methods can be roughly divided
into predictive learning and contrastive learning, where the latter one
attracts more research attention with better empirical performance. We argue
that, however, predictive models weaponed with latent augmentations and
powerful decoder could achieve comparable or even better representation power
than contrastive models. In this work, we introduce data augmentations into
latent space for superior generalization and better efficiency. A novel graph
decoder named Wiener Graph Deconvolutional Network is correspondingly designed
to perform information reconstruction from augmented latent representations.
Theoretical analysis proves the superior reconstruction ability of graph wiener
filter. Extensive experimental results on various datasets demonstrate the
effectiveness of our approach.
- Abstract(参考訳): グラフ自己教師付き学習はラベルなしのグラフから表現を学ぶために大いに使われてきた。
既存の手法は、予測学習とコントラスト学習に大別され、後者はより優れた経験的性能で研究の注目を集める。
しかし、潜在的な拡張と強力なデコーダを備えた予測モデルでは、コントラストモデルと同等あるいはそれ以上の表現能力が得られると論じている。
本研究では,より優れた一般化と効率向上のために,データ拡張を潜在空間に導入する。
Wiener Graph Deconvolutional Networkと呼ばれる新しいグラフデコーダは、拡張潜在表現から情報再構成を行うように設計されている。
理論的解析はグラフワイナーフィルタの優れた再構成能力を証明している。
各種データセットの広範な実験結果から,本手法の有効性が示された。
関連論文リスト
- Uncovering Capabilities of Model Pruning in Graph Contrastive Learning [0.0]
我々は、拡張ビューではなく、異なるモデルバージョンを対比することで、グラフのコントラスト学習の問題を再構築する。
教師なしおよび転送学習によるグラフ分類に関する様々なベンチマークにおいて,本手法を広範囲に検証する。
論文 参考訳(メタデータ) (2024-10-27T07:09:31Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIELは、ノードレベルとグラフレベルの両方の分類タスクにおいて、現在のグラフコントラスト学習法よりも一貫して優れている。
ARIELは敵の攻撃に対してより堅牢である。
論文 参考訳(メタデータ) (2022-08-15T01:24:42Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
コントラスト学習はグラフ表現学習において有効な方法である。
グラフ上のデータ拡張は、はるかに直感的ではなく、高品質のコントラスト的なサンプルを提供するのがずっと難しい。
逆グラフ比較学習(Adversarial Graph Contrastive Learning, ARIEL)を提案する。
さまざまな実世界のデータセット上でのノード分類タスクにおいて、現在のグラフのコントラスト学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2022-02-14T05:54:48Z) - Bootstrapping Informative Graph Augmentation via A Meta Learning
Approach [21.814940639910358]
グラフコントラスト学習では、ベンチマーク手法は様々なグラフ拡張アプローチを適用する。
拡張法のほとんどは学習不可能であり、不便な拡張グラフを生成する問題を引き起こす。
私たちはMEGA(Meta Graph Augmentation)と呼ばれる学習可能なグラフオーグメンタによるグラフ生成を動機付けている。
論文 参考訳(メタデータ) (2022-01-11T07:15:13Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
グラフニューラルネットワークが学習するグラフレベルの表現を高めるための自己監視型学習法を提案する。
グラフ構造を網羅的に理解するために,サブグラフ法のようなアンサンブル学習を提案する。
また, 効率的かつ効果的な対位学習を実現するために, ヘッドテールコントラストサンプル構築法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:12Z) - Catastrophic Forgetting in Deep Graph Networks: an Introductory
Benchmark for Graph Classification [12.423303337249795]
グラフ表現学習シナリオにおける破滅的忘れ現象について検討する。
リプレイはこれまでのところ最も効果的な戦略であり、正規化の使用も最もメリットがあります。
論文 参考訳(メタデータ) (2021-03-22T12:07:21Z) - Iterative Graph Self-Distillation [161.04351580382078]
我々は、IGSD(Iterative Graph Self-Distillation)と呼ばれる新しい教師なしグラフ学習パラダイムを提案する。
IGSDは、グラフ拡張による教師/学生の蒸留を反復的に行う。
我々は,教師なしと半教師なしの両方の設定において,さまざまなグラフデータセットに対して,有意かつ一貫したパフォーマンス向上を実現していることを示す。
論文 参考訳(メタデータ) (2020-10-23T18:37:06Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。