論文の概要: Graffe: Graph Representation Learning via Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2505.04956v1
- Date: Thu, 08 May 2025 05:38:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.752896
- Title: Graffe: Graph Representation Learning via Diffusion Probabilistic Models
- Title(参考訳): Graffe:拡散確率モデルによるグラフ表現学習
- Authors: Dingshuo Chen, Shuchen Xue, Liuji Chen, Yingheng Wang, Qiang Liu, Shu Wu, Zhi-Ming Ma, Liang Wang,
- Abstract要約: 本稿ではグラフ表現学習のための自己教師付き拡散モデルGraffeを紹介する。
ソースグラフをコンパクトな表現に蒸留するグラフエンコーダを特徴とし、拡散復号器の復号過程を導く条件として機能する。
- 参考スコア(独自算出の注目度): 25.28957372847043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion probabilistic models (DPMs), widely recognized for their potential to generate high-quality samples, tend to go unnoticed in representation learning. While recent progress has highlighted their potential for capturing visual semantics, adapting DPMs to graph representation learning remains in its infancy. In this paper, we introduce Graffe, a self-supervised diffusion model proposed for graph representation learning. It features a graph encoder that distills a source graph into a compact representation, which, in turn, serves as the condition to guide the denoising process of the diffusion decoder. To evaluate the effectiveness of our model, we first explore the theoretical foundations of applying diffusion models to representation learning, proving that the denoising objective implicitly maximizes the conditional mutual information between data and its representation. Specifically, we prove that the negative logarithm of the denoising score matching loss is a tractable lower bound for the conditional mutual information. Empirically, we conduct a series of case studies to validate our theoretical insights. In addition, Graffe delivers competitive results under the linear probing setting on node and graph classification tasks, achieving state-of-the-art performance on 9 of the 11 real-world datasets. These findings indicate that powerful generative models, especially diffusion models, serve as an effective tool for graph representation learning.
- Abstract(参考訳): 拡散確率モデル(DPM)は、高品質なサンプルを生成する可能性について広く認識されており、表現学習では気づかない傾向にある。
最近の進歩は、視覚的意味論を捉える可能性を強調しているが、グラフ表現学習にDPMを適用することは、まだ初期段階にある。
本稿では,グラフ表現学習のための自己教師付き拡散モデルGraffeを紹介する。
グラフエンコーダは、ソースグラフをコンパクトな表現に蒸留し、拡散復号器の復号過程を案内する条件として機能する。
提案モデルの有効性を評価するため,まず拡散モデルを用いた表現学習の理論的基礎を考察し,認知対象がデータとその表現間の条件的相互情報を暗黙的に最大化することを示した。
具体的には,デノナイジングスコアマッチング損失の負の対数が条件付き相互情報に対するトラクタブルな下界であることを証明する。
経験的に、我々は理論的な洞察を検証するために一連のケーススタディを実施している。
さらに、Graffeはノードとグラフの分類タスクの線形探索設定の下で競合的な結果をもたらし、11の現実世界データセットのうち9つの最先端のパフォーマンスを達成する。
これらの結果は、強力な生成モデル、特に拡散モデルがグラフ表現学習の有効なツールであることを示している。
関連論文リスト
- Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
本稿では, 個別拡散を単純化し, 時間とともに条件付き独立性を仮定することで問題を回避できる, イテレーティブ・デノナイジング(Iterative Denoising)という新しい枠組みを提案する。
実験により,提案手法はグラフ生成タスクにおいて既存の離散拡散ベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-03-27T15:08:58Z) - Graph Representation Learning with Diffusion Generative Models [0.0]
我々は、グラフデータの意味のある埋め込みを学習するために、オートエンコーダフレームワーク内で離散拡散モデルを訓練する。
本手法は,グラフ表現学習に使用する離散拡散モデルの可能性を示す。
論文 参考訳(メタデータ) (2025-01-22T07:12:10Z) - PAC Learnability under Explanation-Preserving Graph Perturbations [15.83659369727204]
グラフニューラルネットワーク(GNN)はグラフ上で動作し、グラフ構造化データの複雑な関係と依存関係を活用する。
グラフ説明は、その分類ラベルに関して入力グラフの「ほぼ」統計量である部分グラフである。
本研究は、GNNの設計と訓練において、そのような摂動不変性を利用する2つの方法を検討する。
論文 参考訳(メタデータ) (2024-02-07T17:23:15Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Directional diffusion models for graph representation learning [9.457273750874357]
我々は方向拡散モデルと呼ばれる新しいモデルのクラスを提案する。
これらのモデルは前方拡散過程にデータ依存、異方性、指向性ノイズを含む。
我々は,2つのグラフ表現学習タスクに焦点をあてて,12の公開データセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-06-22T21:27:48Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Latent Augmentation For Better Graph Self-Supervised Learning [20.082614919182692]
我々は、潜在的な拡張と強力なデコーダを備えた予測モデルは、対照的なモデルよりも同等またはそれ以上の表現力を達成することができると論じている。
Wiener Graph Deconvolutional Networkと呼ばれる新しいグラフデコーダは、拡張潜在表現から情報再構成を行うように設計されている。
論文 参考訳(メタデータ) (2022-06-26T17:41:59Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。