論文の概要: Revisiting Architecture-aware Knowledge Distillation: Smaller Models and
Faster Search
- arxiv url: http://arxiv.org/abs/2206.13130v1
- Date: Mon, 27 Jun 2022 09:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 23:51:44.844955
- Title: Revisiting Architecture-aware Knowledge Distillation: Smaller Models and
Faster Search
- Title(参考訳): アーキテクチャを意識した知識蒸留: 小さなモデルとより高速な探索
- Authors: Taehyeon Kim, Heesoo Myeong, Se-Young Yun
- Abstract要約: 本稿では,Trust Region Aware Architecture Search to Distill Knowledge (TRADE) と呼ばれる新しいアルゴリズムを提案する。
実験の結果,提案したTRADEアルゴリズムは,従来のNASアプローチとKDトレーニングにおける事前定義されたアーキテクチャの両方より一貫して優れていた。
- 参考スコア(独自算出の注目度): 14.487264853431878
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Knowledge Distillation (KD) has recently emerged as a popular method for
compressing neural networks. In recent studies, generalized distillation
methods that find parameters and architectures of student models at the same
time have been proposed. Still, this search method requires a lot of
computation to search for architectures and has the disadvantage of considering
only convolutional blocks in their search space. This paper introduces a new
algorithm, coined as Trust Region Aware architecture search to Distill
knowledge Effectively (TRADE), that rapidly finds effective student
architectures from several state-of-the-art architectures using trust region
Bayesian optimization approach. Experimental results show our proposed TRADE
algorithm consistently outperforms both the conventional NAS approach and
pre-defined architecture under KD training.
- Abstract(参考訳): ニューラルネットワークを圧縮する一般的な方法として、KD(Knowledge Distillation)が最近登場した。
近年,学生モデルのパラメータと構造を同時に発見する汎用蒸留法が提案されている。
しかし、この探索法はアーキテクチャの探索に多くの計算を必要とするため、その探索空間における畳み込みブロックのみを考慮するという欠点がある。
本稿では,信頼領域のベイズ最適化手法を用いて,複数の最先端アーキテクチャから有効な学生アーキテクチャを迅速に発見できる,信頼領域認識アーキテクチャ探索(Trust Region Aware Architecture Search to Distill Knowledge Effectively,TRADE)を提案する。
実験の結果,提案手法は従来のnasアプローチとkdトレーニングによる事前定義アーキテクチャとを一貫して上回っていることがわかった。
関連論文リスト
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
論文 参考訳(メタデータ) (2024-09-22T13:11:08Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
本稿では,SERモデルの自動構成にニューラルアーキテクチャサーチ(NAS)技術を適用することを提案する。
NASはモデルパラメータサイズを維持しながらSER性能(54.89%から56.28%)を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-31T10:16:10Z) - An Approach for Combining Multimodal Fusion and Neural Architecture
Search Applied to Knowledge Tracing [6.540879944736641]
本稿では,マルチモーダル融合とニューラルアーキテクチャ探索を組み合わせた逐次モデルに基づく最適化手法を提案する。
得られたモデルが優れた性能を達成できることを示す2つの公開実データに対して,本手法の評価を行った。
論文 参考訳(メタデータ) (2021-11-08T13:43:46Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
概念拡張ニューラルアーキテクチャサーチ(CENAS)という手法を提案する。
サンプル効率が高く、計算的創造性にインスパイアされたトランスファーラーニングアプローチとニューラルアーキテクチャサーチを組み合わせたものだ。
新しいモデルのパラメータを近似するために、既存の重みを転送することで、素早いアーキテクチャ探索よりも高速なモデルを見つける。
論文 参考訳(メタデータ) (2021-10-07T02:29:26Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
微分可能なArchiTecture Search(DARTS)は先日,ニューラルアーキテクチャサーチ(NAS)の主流になった。
暗黙の関数定理に基づいてDARTSの過次計算に取り組む。
提案手法であるiDARTSのアーキテクチャ最適化は,定常点に収束することが期待される。
論文 参考訳(メタデータ) (2021-06-21T00:44:11Z) - Neighborhood-Aware Neural Architecture Search [43.87465987957761]
探索空間におけるフラットミニマアーキテクチャを同定するニューラルアーキテクチャ探索(NAS)手法を提案する。
我々の定式化は、アーキテクチャの「平坦性」を考慮に入れ、このアーキテクチャの近傍における性能を集約する。
本論文では, 地域別ランダム検索 (NA-RS) と地域別差別化アーキテクチャ検索 (NA-DARTS) を提案する。
論文 参考訳(メタデータ) (2021-05-13T15:56:52Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
ディリクレ分布をモデルとした連続緩和型混合重みをランダム変数として扱う。
最近開発されたパスワイズ微分により、ディリクレパラメータは勾配に基づく一般化で容易に最適化できる。
微分可能なNASの大きなメモリ消費を軽減するために, 単純かつ効果的な進行学習方式を提案する。
論文 参考訳(メタデータ) (2020-06-18T08:23:02Z) - Does Unsupervised Architecture Representation Learning Help Neural
Architecture Search? [22.63641173256389]
既存のニューラルアーキテクチャサーチ(NAS)手法は、スケールが良くない離散符号化を用いてニューラルアーキテクチャをエンコードするか、アーキテクチャ表現を共同で学習し、探索バイアスを引き起こすような表現上でアーキテクチャ探索を最適化するための教師付き学習ベースの手法を採用する。
アーキテクチャ表現学習と探索が組み合わさっていれば,ニューラルネットワークの構造的特性を潜時空間に保持することは困難であり,その結果,探索性能は低下する。
論文 参考訳(メタデータ) (2020-06-12T04:15:34Z) - RC-DARTS: Resource Constrained Differentiable Architecture Search [162.7199952019152]
資源制約付き微分可能なアーキテクチャ探索法(RC-DARTS)を提案する。
RC-DARTS法は,モデルサイズが小さく,計算量も少ない,軽量なニューラルアーキテクチャを学習する。
論文 参考訳(メタデータ) (2019-12-30T05:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。