論文の概要: "Double vaccinated, 5G boosted!": Learning Attitudes towards COVID-19
Vaccination from Social Media
- arxiv url: http://arxiv.org/abs/2206.13456v1
- Date: Mon, 27 Jun 2022 17:04:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 18:19:57.091510
- Title: "Double vaccinated, 5G boosted!": Learning Attitudes towards COVID-19
Vaccination from Social Media
- Title(参考訳): ダブルワクチン5gブースト!」:ソーシャルメディアからのcovid-19ワクチン接種に対する学習態度
- Authors: Ninghan Chen, Xihui Chen, Zhiqiang Zhong, Jun Pang
- Abstract要約: ソーシャルメディア上でのテキスト投稿を利用して、利用者の接種姿勢をほぼリアルタイムで抽出し追跡する。
我々は、ユーザのソーシャルネットワーク隣人の最近の投稿を統合して、ユーザの真の態度を検出する。
Twitterの注釈付きデータセットに基づいて、我々のフレームワークからインスタンス化されたモデルは、姿勢抽出のパフォーマンスを最大23%向上させることができる。
- 参考スコア(独自算出の注目度): 4.178929174617172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the vaccine hesitancy which impairs the efforts of the COVID-19
vaccination campaign, it is imperative to understand public vaccination
attitudes and timely grasp their changes. In spite of reliability and
trustworthiness, conventional attitude collection based on surveys is
time-consuming and expensive, and cannot follow the fast evolution of
vaccination attitudes. We leverage the textual posts on social media to extract
and track users' vaccination stances in near real time by proposing a deep
learning framework. To address the impact of linguistic features such as
sarcasm and irony commonly used in vaccine-related discourses, we integrate
into the framework the recent posts of a user's social network neighbours to
help detect the user's genuine attitude. Based on our annotated dataset from
Twitter, the models instantiated from our framework can increase the
performance of attitude extraction by up to 23% compared to state-of-the-art
text-only models. Using this framework, we successfully validate the
feasibility of using social media to track the evolution of vaccination
attitudes in real life. We further show one practical use of our framework by
validating the possibility to forecast a user's vaccine hesitancy changes with
information perceived from social media.
- Abstract(参考訳): 新型コロナウイルスの予防接種キャンペーンの努力を損なうワクチンヘシタシーに対処するためには、公衆の予防接種態度を理解し、その変化をタイムリーに把握することが不可欠である。
信頼性と信頼性にもかかわらず、従来の調査に基づく態度収集は時間と費用がかかり、接種態度の急速な進化に追随できない。
我々は,ソーシャルメディア上のテキスト投稿を利用して,深層学習フレームワークを提案することで,ユーザの予防接種姿勢をほぼリアルタイムで抽出し追跡する。
ワクチン関連談話でよく使われる皮肉や皮肉といった言語的特徴の影響に対処するため,ユーザの近親者の最近の投稿をフレームワークに統合し,ユーザの真の態度を検出する。
Twitterの注釈付きデータセットに基づいて、我々のフレームワークからインスタンス化されたモデルは、最先端のテキストのみのモデルと比較して、姿勢抽出のパフォーマンスを最大23%向上させることができる。
この枠組みを用いて,実生活における予防接種態度の進化を追跡するためのソーシャルメディアの利用の可能性を検証する。
さらに, ソーシャルメディアから認識された情報を用いて, 利用者のワクチン依存度変化を予測できる可能性を検証することで, フレームワークの実用性を示す。
関連論文リスト
- Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19
Vaccination on Twitter [6.061534265076204]
新型コロナウイルス(COVID-19)ワクチン接種に対するユーザの態度を示す3,101件以上のツイートの新たなコレクションを作成します。
私たちの知る限りでは、ワクチンのヘシタシーを、予防的および抗ワクチン的スタンスとは異なるカテゴリとしてモデル化する最初のデータセットとモデルです。
論文 参考訳(メタデータ) (2023-01-17T02:00:31Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
本稿では,新型コロナウイルスワクチン関連検索クエリの分類モデルを提案する。
本稿では,モデルが対応可能なメモリトークンとして,高密度特徴を考慮した新しい手法を提案する。
この新しいモデリング手法により,Vaccine Search Insights (VSI) タスクを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter [4.696697601424039]
新型コロナウイルスワクチンに関連するツイートのデータセットの収集と公開について述べる。
このデータセットは、西ヨーロッパから収集された2,198,090のツイートのIDで構成され、そのうち17,934件は原住民の予防接種姿勢に注釈付けされている。
論文 参考訳(メタデータ) (2022-06-27T13:44:48Z) - Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude
Detection in Social Media [40.61499595293957]
VADetと呼ばれるワクチンの姿勢検出のための新しい半教師付きアプローチを提案する。
VADetは、歪んだ姿勢とアスペクトトピックを学習することができ、スタンス検出とツイートクラスタリングの両方で、既存のアスペクトベースの感情分析モデルより優れています。
論文 参考訳(メタデータ) (2022-05-06T15:24:33Z) - Insta-VAX: A Multimodal Benchmark for Anti-Vaccine and Misinformation
Posts Detection on Social Media [32.252687203366605]
ソーシャルメディア上の抗ワクチンポストは、混乱を招き、ワクチンに対する大衆の信頼を低下させることが示されている。
Insta-VAXは、ヒトワクチンに関連する64,957のInstagram投稿のサンプルからなる、新しいマルチモーダルデータセットである。
論文 参考訳(メタデータ) (2021-12-15T20:34:57Z) - Winds of Change: Impact of COVID-19 on Vaccine-related Opinions of
Twitter users [19.08902619892565]
新型コロナウイルス(COVID-19)ワクチンを社会規模で投与することは、新型コロナウイルスの感染拡大を防ぐための最も適切な方法だと考えられている。
この世界的なワクチン接種は、ソーシャルメディアプラットフォーム上のワクチンに対する支持と懸念を強く表明する反Vaxxersと反Vaxxersの可能性を自然に引き起こした。
この研究の目的は、Twitterの談話データのレンズを使って、この理解を改善することである。
論文 参考訳(メタデータ) (2021-11-20T19:33:51Z) - Classifying vaccine sentiment tweets by modelling domain-specific
representation and commonsense knowledge into context-aware attentive GRU [9.8215089151757]
ワクチンのヘシタシーと拒絶はワクチン接種率の低いクラスターを生じさせ、ワクチン接種プログラムの有効性を低下させる。
ソーシャルメディアは、地理的な位置を含み、ワクチンに関する懸念を詳述することで、ワクチンの受け入れに対する新たなリスクを見積もる機会を提供する。
ワクチン関連ツイートなどのソーシャルメディア投稿を分類する手法では、一般的なドメインテキストで訓練された言語モデル(LM)を使用する。
本稿では、ワクチン関連ツイートで訓練されたドメイン固有LMを用いて相互接続されたコンポーネントで構成された新しいエンドツーエンドフレームワークについて、コンテキスト対応の双方向ゲート再帰ネットワーク(CK-BiGRU)にコモンセンス知識をモデル化する。
論文 参考訳(メタデータ) (2021-06-17T15:16:08Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
われわれは、Twitter上での予防接種に関する議論が、予防接種ヘシタントに対する潜在的な不安にどのように影響するかを調査する。
予防接種懐疑派や擁護派が独自の「エチョ室」に居住していることが判明した。
これらのエコーチャンバーの中心には熱心な支持者がいて、高い精度のネットワークとコンテンツベースの分類器を構築しています。
論文 参考訳(メタデータ) (2020-03-26T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。