BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation
- URL: http://arxiv.org/abs/2206.13603v1
- Date: Mon, 27 Jun 2022 19:38:38 GMT
- Title: BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation
- Authors: Nadav Cohen and Itzik Klein
- Abstract summary: This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector.
Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector.
- Score: 12.572597882082054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous underwater vehicles (AUV) perform various applications such as
seafloor mapping and underwater structure health monitoring. Commonly, an
inertial navigation system aided by a Doppler velocity log (DVL) is used to
provide the vehicle's navigation solution. In such fusion, the DVL provides the
velocity vector of the AUV, which determines the navigation solution's accuracy
and helps estimate the navigation states. This paper proposes BeamsNet, an
end-to-end deep learning framework to regress the estimated DVL velocity vector
that improves the accuracy of the velocity vector estimate, and could replace
the model-based approach. Two versions of BeamsNet, differing in their input to
the network, are suggested. The first uses the current DVL beam measurements
and inertial sensors data, while the other utilizes only DVL data, taking the
current and past DVL measurements for the regression process. Both simulation
and sea experiments were made to validate the proposed learning approach
relative to the model-based approach. Sea experiments were made with the Snapir
AUV in the Mediterranean Sea, collecting approximately four hours of DVL and
inertial sensor data. Our results show that the proposed approach achieved an
improvement of more than 60% in estimating the DVL velocity vector.
Related papers
- DCNet: A Data-Driven Framework for DVL Calibration [2.915868985330569]
We introduce DCNet, a data-driven framework that utilizes a two-dimensional convolution kernel in an innovative way.
We demonstrate an average improvement of 70% in accuracy and 80% improvement in calibration time, compared to the baseline approach.
Our results also open up new applications for marine robotics utilizing low-cost, high-accurate DVLs.
arXiv Detail & Related papers (2024-10-11T13:47:40Z) - Seamless Underwater Navigation with Limited Doppler Velocity Log Measurements [13.221163846643607]
We propose a hybrid neural coupled (HNC) approach for seamless AUV navigation in situations of limited DVL measurements.
First, we drive an approach to regress two or three missing DVL beams.
Then, those beams, together with the measured beams, are incorporated into the extended Kalman filter (EKF)
arXiv Detail & Related papers (2024-04-21T18:56:54Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Set-Transformer BeamsNet for AUV Velocity Forecasting in Complete DVL
Outage Scenarios [10.64241024049424]
We propose a Set-Transformer-based BeamsNet to regress the current AUV velocity in case of a complete DVL outage.
Our approach was evaluated using data from experiments held in the Mediterranean Sea with the Snapir AUV.
arXiv Detail & Related papers (2022-12-22T13:10:44Z) - LiBeamsNet: AUV Velocity Vector Estimation in Situations of Limited DVL
Beam Measurements [12.572597882082054]
AUVs can operate in deep underwater environments beyond human reach.
A standard solution for the autonomous navigation problem can be obtained by fusing the inertial navigation system and the Doppler velocity log sensor.
In this paper we propose a deep learning framework, LiBeamsNet, that utilizes the inertial data and the partial beam velocities to regress the missing beams.
arXiv Detail & Related papers (2022-10-20T20:17:23Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - A Deep Learning Approach To Dead-Reckoning Navigation For Autonomous
Underwater Vehicles With Limited Sensor Payloads [0.0]
A Recurrent Neural Network (RNN) was developed to predict the relative horizontal velocities of an Autonomous Underwater Vehicle (AUV)
The RNN network is trained using experimental data, where a doppler velocity logger (DVL) provided ground truth velocities.
The predictions of the relative velocities were implemented in a dead-reckoning algorithm to approximate north and east positions.
arXiv Detail & Related papers (2021-10-01T21:40:10Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
Self-supervised monocular depth estimation in driving scenarios has achieved comparable performance to supervised approaches.
We present R4Dyn, a novel set of techniques to use cost-efficient radar data on top of a self-supervised depth estimation framework.
arXiv Detail & Related papers (2021-08-10T17:57:03Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.