DCNet: A Data-Driven Framework for DVL Calibration
- URL: http://arxiv.org/abs/2410.08809v2
- Date: Mon, 14 Oct 2024 09:47:10 GMT
- Title: DCNet: A Data-Driven Framework for DVL Calibration
- Authors: Zeev Yampolsky, Itzik Klein,
- Abstract summary: We introduce DCNet, a data-driven framework that utilizes a two-dimensional convolution kernel in an innovative way.
We demonstrate an average improvement of 70% in accuracy and 80% improvement in calibration time, compared to the baseline approach.
Our results also open up new applications for marine robotics utilizing low-cost, high-accurate DVLs.
- Score: 2.915868985330569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous underwater vehicles (AUVs) are underwater robotic platforms used in a variety of applications. An AUV's navigation solution relies heavily on the fusion of inertial sensors and Doppler velocity logs (DVL), where the latter delivers accurate velocity updates. To ensure accurate navigation, a DVL calibration is undertaken before the mission begins to estimate its error terms. During calibration, the AUV follows a complex trajectory and employs nonlinear estimation filters to estimate error terms. In this paper, we introduce DCNet, a data-driven framework that utilizes a two-dimensional convolution kernel in an innovative way. Using DCNet and our proposed DVL error model, we offer a rapid calibration procedure. This can be applied to a trajectory with a nearly constant velocity. To train and test our proposed approach a dataset of 276 minutes long with real DVL recorded measurements was used. We demonstrated an average improvement of 70% in accuracy and 80% improvement in calibration time, compared to the baseline approach, with a low-performance DVL. As a result of those improvements, an AUV employing a low-cost DVL, can achieve higher accuracy, shorter calibration time, and apply a simple nearly constant velocity calibration trajectory. Our results also open up new applications for marine robotics utilizing low-cost, high-accurate DVLs.
Related papers
- Seamless Underwater Navigation with Limited Doppler Velocity Log Measurements [13.221163846643607]
We propose a hybrid neural coupled (HNC) approach for seamless AUV navigation in situations of limited DVL measurements.
First, we drive an approach to regress two or three missing DVL beams.
Then, those beams, together with the measured beams, are incorporated into the extended Kalman filter (EKF)
arXiv Detail & Related papers (2024-04-21T18:56:54Z) - Data-Driven Strategies for Coping with Incomplete DVL Measurements [15.619053656143564]
In real-world scenarios, incomplete Doppler velocity log measurements occur, resulting in positioning errors and mission aborts.
This paper presents a comparative analysis of two cutting-edge deep learning methodologies, namely LiBeamsNet and MissBeamNet.
We found that both deep learning architectures outperformed model-based approaches by over 16% in velocity prediction accuracy.
arXiv Detail & Related papers (2024-01-28T10:17:36Z) - DVL Calibration using Data-driven Methods [3.4447129363520332]
We propose an end-to-end deep-learning framework for the calibration procedure.
We show that our proposed approach outperforms model-based approaches by 35% in accuracy and 80% in the required calibration time.
arXiv Detail & Related papers (2024-01-23T11:52:25Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
We present an approach for automated and geo-referenced calibration of automotive radar sensors.
Our method does not require external modifications of a vehicle and instead uses the location data obtained from automated vehicles.
Our evaluation on data from a real testing site shows that our method can correctly calibrate infrastructure sensors in an automated manner.
arXiv Detail & Related papers (2023-06-23T07:01:10Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Set-Transformer BeamsNet for AUV Velocity Forecasting in Complete DVL
Outage Scenarios [10.64241024049424]
We propose a Set-Transformer-based BeamsNet to regress the current AUV velocity in case of a complete DVL outage.
Our approach was evaluated using data from experiments held in the Mediterranean Sea with the Snapir AUV.
arXiv Detail & Related papers (2022-12-22T13:10:44Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - BeamsNet: A data-driven Approach Enhancing Doppler Velocity Log
Measurements for Autonomous Underwater Vehicle Navigation [12.572597882082054]
This paper proposes BeamsNet, an end-to-end deep learning framework to regress the estimated DVL velocity vector.
Our results show that the proposed approach achieved an improvement of more than 60% in estimating the DVL velocity vector.
arXiv Detail & Related papers (2022-06-27T19:38:38Z) - An Empirical Study of Training End-to-End Vision-and-Language
Transformers [50.23532518166621]
We present METER(textbfMultimodal textbfEnd-to-end textbfTransformtextbfER), through which we investigate how to design and pre-train a fully transformer-based VL model.
Specifically, we dissect the model designs along multiple dimensions: vision encoders (e.g., CLIP-ViT, Swin transformer), text encoders (e.g., RoBERTa, DeBERTa), multimodal fusion (e.g., merged attention vs. co-
arXiv Detail & Related papers (2021-11-03T17:55:36Z) - Learning to Localize Using a LiDAR Intensity Map [87.04427452634445]
We propose a real-time, calibration-agnostic and effective localization system for self-driving cars.
Our method learns to embed the online LiDAR sweeps and intensity map into a joint deep embedding space.
Our full system can operate in real-time at 15Hz while achieving centimeter level accuracy across different LiDAR sensors and environments.
arXiv Detail & Related papers (2020-12-20T11:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.