Detecting and Eliminating Quantum Noise of Quantum Measurements
- URL: http://arxiv.org/abs/2206.13743v2
- Date: Sun, 5 Nov 2023 11:20:37 GMT
- Title: Detecting and Eliminating Quantum Noise of Quantum Measurements
- Authors: Shuanghong Tang, Congcong Zheng, and Kun Wang
- Abstract summary: We first detect and then eliminate quantum noise so that the classical noise assumption is satisfied.
We demonstrate the feasibility of the two-stage procedure numerically on Baidu Quantum Platform.
Remarkably, the results show that quantum noise in measurement devices is significantly suppressed, and the quantum accuracy is substantially improved.
- Score: 3.871198861387443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a two-stage procedure to systematically address
quantum noise inherent in quantum measurements. The idea behind it is
intuitive: we first detect and then eliminate quantum noise so that the
classical noise assumption is satisfied and measurement error mitigation works.
In the first stage, inspired by coherence witness in the resource theory of
quantum coherence, we design an efficient method to detect quantum noise. It
works by fitting the difference between two measurement statistics to the
Fourier series, where the statistics are obtained using maximally coherent
states with relative phase and maximally mixed states as inputs. The fitting
coefficients quantitatively benchmark quantum noise. In the second stage, we
design various methods to eliminate quantum noise, inspired by the Pauli
twirling technique. They work by executing randomly sampled Pauli gates before
the measurement device and conditionally flipping the measurement outcomes in
such a way that the effective measurement device contains only classical noise.
We demonstrate the feasibility of the two-stage procedure numerically on Baidu
Quantum Platform. Remarkably, the results show that quantum noise in
measurement devices is significantly suppressed, and the quantum computation
accuracy is substantially improved. We highlight that the two-stage procedure
complements existing measurement error mitigation techniques, and they together
form a standard toolbox for manipulating measurement errors in near-term
quantum devices.
Related papers
- Reshaping quantum device noise via quantum error correction [0.818005422059368]
We show that quantum error correction codes can reshape the native noise profiles of quantum devices.
We analytically derive the quantum channels describing noisy two-qubit entangling gates.
We then demonstrate the noise reshaping on the IonQ Aria-1 quantum hardware.
arXiv Detail & Related papers (2024-11-01T17:20:04Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Leveraging hardware-control imperfections for error mitigation via
generalized quantum subspace [0.8399688944263843]
In the era of quantum computing without full fault-tolerance, it is essential to suppress noise effects via the quantum error mitigation techniques to enhance the computational power of the quantum devices.
One of the most effective noise-agnostic error mitigation schemes is the generalized quantum subspace expansion (GSE) method.
We propose the fault-subspace method, which constructs an error-mitigated quantum state with copies of quantum states with different noise levels.
arXiv Detail & Related papers (2023-03-14T07:01:30Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Steering-enhanced quantum metrology using superpositions of quantum
channels [0.0]
We consider a control system that manipulates the target to pass through superpositions of either dephased or depolarized phase shifts.
We implement proof-of-principle experiments for a superposition of the dephased phase shifts on a IBM Quantum computer.
arXiv Detail & Related papers (2022-06-08T09:15:06Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Systematic errors in direct state measurements with quantum controlled
measurements [0.0]
We use a quantum controlled measurement framework for measuring quantum states directly.
We numerically investigate the systematic errors, evaluate the confidence region, and investigate the effect of experimental noise.
Our analysis has important applications in direct quantum state tomography.
arXiv Detail & Related papers (2020-02-18T01:40:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.