Unveiling photon statistics with a 100-pixel photon-number-resolving
detector
- URL: http://arxiv.org/abs/2206.13753v1
- Date: Tue, 28 Jun 2022 04:38:58 GMT
- Title: Unveiling photon statistics with a 100-pixel photon-number-resolving
detector
- Authors: Risheng Cheng, Yiyu Zhou, Sihao Wang, Mohan Shen, Towsif Taher, Hong
X. Tang
- Abstract summary: We demonstrate an on-chip detector that can resolve up to 100 photons by multiplexing an array of superconducting nanowires along a single waveguide.
The unparalleled photon number paired with the high-speed resolution response exclusively allows us to unveil the quantum photon statistics of a true thermal light source.
- Score: 0.09786690381850356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-photon detectors are ubiquitous in quantum information science and
quantum sensing. They are key enabling technologies for numerous scientific
discoveries and fundamental tests of quantum optics. Photon-number-revolving
detectors are the ultimate measurement tool of light. However, few detectors to
date can provide high-fidelity photon number resolution at few-photon levels.
Here, we demonstrate an on-chip detector that can resolve up to 100 photons by
spatiotemporally multiplexing an array of superconducting nanowires along a
single waveguide. The unparalleled photon number resolution paired with the
high-speed response exclusively allows us to unveil the quantum photon
statistics of a true thermal light source for the first time, which is realized
by direct measurement of high-order correlation function g^(N) with N up to 15,
observation of photon-subtraction-induced photon number enhancement, and
quantum-limited state discrimination against a coherent light source. Our
detector provides a viable route towards various important applications,
including photonic quantum computation and quantum metrology.
Related papers
- Cryogenic Feedforward of a Photonic Quantum State [0.6819010383838326]
Modulation conditioned on measurements on entangled photonic quantum states is a cornerstone technology of optical quantum information processing.
We demonstrate low-latency feedforward using a quasi-photon-number-resolved measurement on a quantum light source.
This represents an important benchmark for the fastest quantum photonic feedforward experiments.
arXiv Detail & Related papers (2024-10-11T15:29:15Z) - High-Performance Photon Number Resolving Detectors for 850-950 nm
wavelengths [0.0]
superconducting-nanowire single-photon detectors have witnessed two decades of great developments.
Recent research works have demonstrated proof of principle photon number resolving (PNR) SNSPDs counting 2 to 5 photons.
In this paper, we demonstrate NbTiN based SNSPDs with over 94 percent system detection efficiency, sub 11 ps timing jitter for one photon, and sub 7 ps for two photon.
arXiv Detail & Related papers (2024-01-14T11:51:10Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Resolution of 100 photons and quantum generation of unbiased random
numbers [0.0]
Quantum detection of light is mostly relegated to the microscale.
The ability to perform measurements to resolve photon numbers is highly desirable for a variety of quantum information applications.
In this work, we extend photon measurement into the mesoscopic regime by implementing a detection scheme based on multiplexing highly quantum-efficient transition-edge sensors.
arXiv Detail & Related papers (2022-05-02T21:34:01Z) - Quantum detector tomography of superconducting nanostrip
photon-number-resolving detector [0.0]
We improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform.
The device has photon-number-resolving performance up to five photons without any multiplexing or arraying.
arXiv Detail & Related papers (2021-02-19T02:19:19Z) - Temporal array with superconducting nanowire single-photon detectors for
photon-number-resolution [0.0]
We present a 16 element, temporal-array, photon-number-resolving (PNR) detector, which is a multiplexed single-photon detector that splits an input signal over multiple time-bins.
A theoretical investigation of the PNR capabilities of the detector is performed and it is concluded that compared to a single-photon detector, our array detector can resolve one order of magnitude higher mean photon numbers.
arXiv Detail & Related papers (2020-09-17T14:30:51Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.