Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs
- URL: http://arxiv.org/abs/2206.13787v1
- Date: Tue, 28 Jun 2022 06:47:27 GMT
- Title: Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs
- Authors: Chang Sun, Johan van Soest, and Michel Dumontier
- Abstract summary: We propose DP-CGANS, a differentially private conditional GAN framework consisting of data transformation, sampling, conditioning, and networks training to generate realistic and privacy-preserving data.
We extensively evaluate our model with state-of-the-art generative models on three public datasets and two real-world personal health datasets in terms of statistical similarity, machine learning performance, and privacy measurement.
- Score: 2.2265840715792735
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the remarkable success of Generative Adversarial Networks (GANs) on
text, images, and videos, generating high-quality tabular data is still under
development owing to some unique challenges such as capturing dependencies in
imbalanced data, optimizing the quality of synthetic patient data while
preserving privacy. In this paper, we propose DP-CGANS, a differentially
private conditional GAN framework consisting of data transformation, sampling,
conditioning, and networks training to generate realistic and
privacy-preserving tabular data. DP-CGANS distinguishes categorical and
continuous variables and transforms them to latent space separately. Then, we
structure a conditional vector as an additional input to not only presents the
minority class in the imbalanced data, but also capture the dependency between
variables. We inject statistical noise to the gradients in the networking
training process of DP-CGANS to provide a differential privacy guarantee. We
extensively evaluate our model with state-of-the-art generative models on three
public datasets and two real-world personal health datasets in terms of
statistical similarity, machine learning performance, and privacy measurement.
We demonstrate that our model outperforms other comparable models, especially
in capturing dependency between variables. Finally, we present the balance
between data utility and privacy in synthetic data generation considering the
different data structure and characteristics of real-world datasets such as
imbalance variables, abnormal distributions, and sparsity of data.
Related papers
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
Conditional Variational Autoencoders (CVAEs) trained on feature vectors extracted from large pre-trained vision foundation models.
Our method notably outperforms traditional approaches in both medical and natural image domains.
Results underscore the potential of generative models to significantly impact deep learning applications in data-scarce and privacy-sensitive environments.
arXiv Detail & Related papers (2024-08-01T15:26:24Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITE is a data-centric framework to identify incongruous regions of in-distribution (ID) data.
We empirically validate Data-SUITE's performance and coverage guarantees.
arXiv Detail & Related papers (2022-02-17T18:58:31Z) - An Analysis of the Deployment of Models Trained on Private Tabular
Synthetic Data: Unexpected Surprises [4.129847064263057]
Diferentially private (DP) synthetic datasets are a powerful approach for training machine learning models.
We study the effects of differentially private synthetic data generation on classification.
arXiv Detail & Related papers (2021-06-15T21:00:57Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
This study aims to establish a trade-off between bias and fairness in the models trained using synthetic data.
We demonstrate there exist a varying levels of bias impact on models trained using synthetic data.
arXiv Detail & Related papers (2021-05-10T06:57:14Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.