Probabilistic causal graphs as categorical data synthesizers: Do they do better than Gaussian Copulas and Conditional Tabular GANs?
- URL: http://arxiv.org/abs/2504.11547v1
- Date: Tue, 15 Apr 2025 18:41:54 GMT
- Title: Probabilistic causal graphs as categorical data synthesizers: Do they do better than Gaussian Copulas and Conditional Tabular GANs?
- Authors: Olha Shaposhnyk, Noor Abid, Mouri Zakir, Svetlana Yanushkevich,
- Abstract summary: This study investigates the generation of high-quality synthetic categorical data, such as survey data, using causal graph models.<n>We used the categorical data that are based on the survey of accessibility to services for people with disabilities.<n>We created both SEM and BN models to represent causal relationships and to capture joint distributions between variables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the generation of high-quality synthetic categorical data, such as survey data, using causal graph models. Generating synthetic data aims not only to create a variety of data for training the models but also to preserve privacy while capturing relationships between the data. The research employs Structural Equation Modeling (SEM) followed by Bayesian Networks (BN). We used the categorical data that are based on the survey of accessibility to services for people with disabilities. We created both SEM and BN models to represent causal relationships and to capture joint distributions between variables. In our case studies, such variables include, in particular, demographics, types of disability, types of accessibility barriers and frequencies of encountering those barriers. The study compared the SEM-based BN method with alternative approaches, including the probabilistic Gaussian copula technique and generative models like the Conditional Tabular Generative Adversarial Network (CTGAN). The proposed method outperformed others in statistical metrics, including the Chi-square test, Kullback-Leibler divergence, and Total Variation Distance (TVD). In particular, the BN model demonstrated superior performance, achieving the highest TVD, indicating alignment with the original data. The Gaussian Copula ranked second, while CTGAN exhibited moderate performance. These analyses confirmed the ability of the SEM-based BN to produce synthetic data that maintain statistical and relational validity while maintaining confidentiality. This approach is particularly beneficial for research on sensitive data, such as accessibility and disability studies.
Related papers
- An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
Causal discovery has the potential to uncover mechanistic insights from biological experiments.<n>We propose a supervised model trained on large-scale, synthetic data to predict causal graphs.<n>Our approach is enabled by the observation that typical errors in the outputs of a discovery algorithm remain comparable across datasets.
arXiv Detail & Related papers (2024-02-02T21:57:58Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - Discovering Mixtures of Structural Causal Models from Time Series Data [23.18511951330646]
We propose a general variational inference-based framework called MCD to infer the underlying causal models.
Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood.
We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks.
arXiv Detail & Related papers (2023-10-10T05:13:10Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - A Federated Learning-based Industrial Health Prognostics for
Heterogeneous Edge Devices using Matched Feature Extraction [16.337207503536384]
We propose a pioneering FL-based health prognostic model with a feature similarity-matched parameter aggregation algorithm.
We show that the proposed method yields accuracy improvements as high as 44.5% and 39.3% for state-of-health estimation and remaining useful life estimation.
arXiv Detail & Related papers (2023-05-13T07:20:31Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z) - Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs [2.2265840715792735]
We propose DP-CGANS, a differentially private conditional GAN framework consisting of data transformation, sampling, conditioning, and networks training to generate realistic and privacy-preserving data.
We extensively evaluate our model with state-of-the-art generative models on three public datasets and two real-world personal health datasets in terms of statistical similarity, machine learning performance, and privacy measurement.
arXiv Detail & Related papers (2022-06-28T06:47:27Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
This study aims to establish a trade-off between bias and fairness in the models trained using synthetic data.
We demonstrate there exist a varying levels of bias impact on models trained using synthetic data.
arXiv Detail & Related papers (2021-05-10T06:57:14Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.