Linear programming-based solution methods for constrained POMDPs
- URL: http://arxiv.org/abs/2206.14081v1
- Date: Tue, 28 Jun 2022 15:22:24 GMT
- Title: Linear programming-based solution methods for constrained POMDPs
- Authors: Can Kavaklioglu, Robert Helmeczi, Mucahit Cevik
- Abstract summary: Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena.
We use grid-based approximations in combination with linear programming (LP) models to generate approximate policies for CPOMDPs.
- Score: 0.5156484100374059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constrained partially observable Markov decision processes (CPOMDPs) have
been used to model various real-world phenomena. However, they are notoriously
difficult to solve to optimality, and there exist only a few approximation
methods for obtaining high-quality solutions. In this study, we use grid-based
approximations in combination with linear programming (LP) models to generate
approximate policies for CPOMDPs. We consider five CPOMDP problem instances and
conduct a detailed numerical study of both their finite and infinite horizon
formulations. We first establish the quality of the approximate unconstrained
POMDP policies through a comparative analysis with exact solution methods. We
then show the performance of the LP-based CPOMDP solution approaches for
varying budget levels (i.e., cost limits) for different problem instances.
Finally, we show the flexibility of LP-based approaches by applying
deterministic policy constraints, and investigate the impact that these
constraints have on collected rewards and CPU run time. Our analysis
demonstrates that LP models can effectively generate approximate policies for
both finite and infinite horizon problems, while providing the flexibility to
incorporate various additional constraints into the underlying model.
Related papers
- Landscape of Policy Optimization for Finite Horizon MDPs with General State and Action [10.219627570276689]
We develop a framework for a class of Markov Decision Processes with general state and spaces.
We show that gradient methods converge to the globally optimal policy with a nonasymptomatic condition.
Our result establishes first complexity for multi-period inventory systems.
arXiv Detail & Related papers (2024-09-25T17:56:02Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Towards Instance-Optimality in Online PAC Reinforcement Learning [28.156332484814616]
We propose the first instance-dependent lower bound on the sample complexity required for the PAC identification of a near-optimal policy.
We demonstrate that the sample complexity of the PEDEL algorithm of citeWagenmaker22linearMDP closely approaches this lower bound.
arXiv Detail & Related papers (2023-10-31T19:26:36Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
We address the solution of the popular Wordle puzzle, using new reinforcement learning methods.
For the Wordle puzzle, they yield on-line solution strategies that are very close to optimal at relatively modest computational cost.
arXiv Detail & Related papers (2022-11-15T03:46:41Z) - Optimality Guarantees for Particle Belief Approximation of POMDPs [55.83001584645448]
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems.
POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid.
We propose a theory characterizing the approximation error of the particle filtering techniques that these algorithms use.
arXiv Detail & Related papers (2022-10-10T21:11:55Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Nearly Optimal Latent State Decoding in Block MDPs [74.51224067640717]
In episodic Block MDPs, the decision maker has access to rich observations or contexts generated from a small number of latent states.
We are first interested in estimating the latent state decoding function based on data generated under a fixed behavior policy.
We then study the problem of learning near-optimal policies in the reward-free framework.
arXiv Detail & Related papers (2022-08-17T18:49:53Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Risk-Averse Decision Making Under Uncertainty [18.467950783426947]
A large class of decision making under uncertainty problems can be described via Markov decision processes (MDPs) or partially observable MDPs (POMDPs)
In this paper, we consider the problem of designing policies for MDPs and POMDPs with objectives and constraints in terms of dynamic coherent risk measures.
arXiv Detail & Related papers (2021-09-09T07:52:35Z) - Strengthening Deterministic Policies for POMDPs [5.092711491848192]
We provide a novel MILP encoding that supports sophisticated specifications in the form of temporal logic constraints.
We employ a preprocessing of the POMDP to encompass memory-based decisions.
The advantages of our approach lie (1) in the flexibility to strengthen simple deterministic policies without losing computational tractability and (2) in the ability to enforce the provable satisfaction of arbitrarily many specifications.
arXiv Detail & Related papers (2020-07-16T14:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.