論文の概要: ECG Heartbeat classification using deep transfer learning with
Convolutional Neural Network and STFT technique
- arxiv url: http://arxiv.org/abs/2206.14200v1
- Date: Tue, 28 Jun 2022 04:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-02 14:35:26.580176
- Title: ECG Heartbeat classification using deep transfer learning with
Convolutional Neural Network and STFT technique
- Title(参考訳): 畳み込みニューラルネットワークとSTFTを用いた深部伝達学習による心電図心拍分類
- Authors: Minh Cao, Tianqi Zhao, Yanxun Li, Wenhao Zhang, Peyman Benharash,
Ramin Ramezani
- Abstract要約: そこで本研究では,小規模学習データセットの分類を目的としたディープトランスファー学習フレームワークを提案する。
提案手法は、AAMI EC57規格に従って、汎用画像分類器ResNet-18をMIT-BIH不整脈データセットで微調整する。
- 参考スコア(独自算出の注目度): 3.0065593137364353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) is a simple non-invasive measure to identify
heart-related issues such as irregular heartbeats known as arrhythmias. While
artificial intelligence and machine learning is being utilized in a wide range
of healthcare related applications and datasets, many arrhythmia classifiers
using deep learning methods have been proposed in recent years. However, sizes
of the available datasets from which to build and assess machine learning
models is often very small and the lack of well-annotated public ECG datasets
is evident. In this paper, we propose a deep transfer learning framework that
is aimed to perform classification on a small size training dataset. The
proposed method is to fine-tune a general-purpose image classifier ResNet-18
with MIT-BIH arrhythmia dataset in accordance with the AAMI EC57 standard. This
paper further investigates many existing deep learning models that have failed
to avoid data leakage against AAMI recommendations. We compare how different
data split methods impact the model performance. This comparison study implies
that future work in arrhythmia classification should follow the AAMI EC57
standard when using any including MIT-BIH arrhythmia dataset.
- Abstract(参考訳): 心電図(Electrocardiogram、ECG)は、不整脈と呼ばれる不整脈などの心臓関連疾患を特定するための単純な非侵襲的尺度である。
人工知能と機械学習は、幅広い医療関連アプリケーションやデータセットで利用されているが、ディープラーニング手法を用いた多くの不整脈分類器が近年提案されている。
しかし、機械学習モデルの構築と評価のための利用可能なデータセットのサイズは非常に小さく、十分に注釈付けされたパブリックECGデータセットがないことは明らかである。
本稿では,小規模の学習データセットで分類を行うための深層伝達学習フレームワークを提案する。
提案手法は、AAMI EC57規格に従って、汎用画像分類器ResNet-18をMIT-BIH不整脈データセットで微調整する。
本稿では,aamiレコメンデーションに対するデータ漏洩の回避に失敗した既存のディープラーニングモデルについてさらに検討する。
異なるデータ分割手法がモデルの性能に与える影響を比較する。
この比較研究は、MIT-BIH不整脈データセットを含む任意のデータを使用する場合、不整脈分類における今後の研究はAAMI EC57標準に従うべきであることを示唆している。
関連論文リスト
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
本稿では,ECG信号の自動診断のためのGAN(Generative Adversarial Network)を用いた2階層型階層型ディープラーニングフレームワークを提案する。
第1レベルのモデルはメモリ拡張DeepオートエンコーダとGANで構成されており、異常信号と通常のECGを区別して異常検出を行う。
第2レベルの学習は、異なる不整脈識別のための堅牢な多クラス分類を目指している。
論文 参考訳(メタデータ) (2022-10-19T12:29:05Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
我々は、ECGベースの医療アプリケーションのための連合環境で、新しい説明可能な人工知能(XAI)ベースのディープラーニングフレームワークを設計する。
提案したフレームワークは、MIT-BIH Arrhythmiaデータベースを使用してトレーニングされ、テストされた。
論文 参考訳(メタデータ) (2021-05-26T11:59:44Z) - Deep Learning-Based Arrhythmia Detection Using RR-Interval Framed
Electrocardiograms [9.884633954053344]
ディープラーニングは、生体認証セキュリティアプリケーションにおける個人認証を実現するために使用することができる。
我々は,連続したRピーク間の距離を表す時間スライスされた心電図データを用いた不整脈検出モデルを開発した。
この小型システムは、ウェアラブルデバイスやリアルタイム監視機器に実装することができる。
論文 参考訳(メタデータ) (2020-12-01T09:10:24Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。