論文の概要: Explainable AI (XAI) for Arrhythmia detection from electrocardiograms
- arxiv url: http://arxiv.org/abs/2508.17294v1
- Date: Sun, 24 Aug 2025 10:44:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-26 18:43:45.449141
- Title: Explainable AI (XAI) for Arrhythmia detection from electrocardiograms
- Title(参考訳): 心電図による不整脈検出のための説明可能なAI(XAI)
- Authors: Joschka Beck, Arlene John,
- Abstract要約: 深層学習は心電図(ECG)信号から高い精度の不整脈検出を可能にしているが、臨床応用には限界がある。
本研究では,時系列ECG分析に特化して適応した説明可能なAI(XAI)技術の適用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advancements in deep learning have enabled highly accurate arrhythmia detection from electrocardiogram (ECG) signals, but limited interpretability remains a barrier to clinical adoption. This study investigates the application of Explainable AI (XAI) techniques specifically adapted for time-series ECG analysis. Using the MIT-BIH arrhythmia dataset, a convolutional neural network-based model was developed for arrhythmia classification, with R-peak-based segmentation via the Pan-Tompkins algorithm. To increase the dataset size and to reduce class imbalance, an additional 12-lead ECG dataset was incorporated. A user needs assessment was carried out to identify what kind of explanation would be preferred by medical professionals. Medical professionals indicated a preference for saliency map-based explanations over counterfactual visualisations, citing clearer correspondence with ECG interpretation workflows. Four SHapley Additive exPlanations (SHAP)-based approaches: permutation importance, KernelSHAP, gradient-based methods, and Deep Learning Important FeaTures (DeepLIFT), were implemented and compared. The model achieved 98.3% validation accuracy on MIT-BIH but showed performance degradation on the combined dataset, underscoring dataset variability challenges. Permutation importance and KernelSHAP produced cluttered visual outputs, while gradient-based and DeepLIFT methods highlighted waveform regions consistent with clinical reasoning, but with variability across samples. Findings emphasize the need for domain-specific XAI adaptations in ECG analysis and highlight saliency mapping as a more clinically intuitive approach
- Abstract(参考訳): 深層学習の進歩により心電図(ECG)信号から高い精度の不整脈検出が可能となったが、臨床応用には限界がある。
本研究では,時系列ECG分析に特化して適応した説明可能なAI(XAI)技術の適用について検討する。
MIT-BIHの不整脈データセットを用いて、Pan-TompkinsアルゴリズムによるR-peak-based segmentationを用いて、不整脈分類のための畳み込みニューラルネットワークベースのモデルを開発した。
データセットのサイズを拡大し、クラス不均衡を低減するため、追加の12リードのECGデータセットが組み込まれた。
医療従事者にとってどのような説明が望ましいかを特定するために,ユーザニーズ評価を行った。
医療専門家は、ECG解釈ワークフローとのより明確な対応を引用して、対実的な視覚化よりも、正当性マップに基づく説明を好むことを示した。
4つのSHAP(SHapley Additive exPlanations)に基づくアプローチ:置換重要度、カーネルSHAP、勾配に基づく方法、Deep Learning important FeaTures(DeepLIFT)を実装し比較した。
このモデルは、MIT-BIHで98.3%の検証精度を達成したが、組み合わせたデータセットのパフォーマンス劣化を示し、データセットの多様性の課題を裏付けた。
置換の重要性とKernelSHAPは粗い視覚出力を生成する一方で、勾配法とDeepLIFT法では、臨床推論と一致した波形領域が示され、サンプル間でのばらつきが見られた。
発見は、心電図解析におけるドメイン特異的XAI適応の必要性を強調し、より臨床的に直感的なアプローチとして、サリエンシマッピングを強調している。
関連論文リスト
- ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
本稿では,エッジデバイス上での効率的なリアルタイム不整脈分類に最適化されたArrhythmiNet V1とV2を提案する。
MobileNetの深い分離可能な畳み込み設計にインスパイアされたこれらのモデルは、それぞれ302.18KBと157.76KBのメモリフットプリントを維持している。
本研究は, 実用, ウェアラブル, 組込みECGモニタリングシステムにおいて, 解釈可能性, 予測精度, 計算効率の両立の可能性を示すものである。
論文 参考訳(メタデータ) (2025-04-30T18:22:45Z) - Electrocardiogram (ECG) Based Cardiac Arrhythmia Detection and Classification using Machine Learning Algorithms [0.0]
機械学習(ML)と深層学習(DL)は、診断、予後、重篤な健康状態の治療を改善するために、医学の新たな展望を開いている。
本稿では,不整脈心電図(ECG)信号を分類するための予測精度の高いMLモデルの開発に着目する。
論文 参考訳(メタデータ) (2024-12-07T08:29:44Z) - MEDPSeg: Hierarchical polymorphic multitask learning for the segmentation of ground-glass opacities, consolidation, and pulmonary structures on computed tomography [37.119000111386924]
MEDPSegは階層型多形マルチタスク学習(HPML)を通して異種胸部CTターゲットから学習する
本稿では,GGOと統合セグメンテーションタスクの最先端性能を実現するPMLについて述べる。
さらに、MEDPSegは肺発作、気道、肺動脈、肺病変の分節を同時に行う。
論文 参考訳(メタデータ) (2023-12-04T21:46:39Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Deep learning based ECG segmentation for delineation of diverse arrhythmias [0.0]
多様な不整脈に着目した心電図記述のためのU-Netライクセグメンテーションモデルを提案する。
これに続いて後処理アルゴリズムがノイズを除去し、P、QRS、T波の境界を自動的に決定する。
F1スコアはQRSおよびT波の99%,LUDBデータセットのP波の97%以上である。
論文 参考訳(メタデータ) (2023-04-13T03:20:45Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
本稿では,心電図信号に基づく心疾患検出の堅牢性を高めるために,生理学的に着想を得たデータ拡張手法を提案する。
我々は、ワッサーシュタイン空間の測地線に沿った他のクラスに対してデータ分布を摂動することで、拡張されたサンプルを得る。
12個の心電図信号から学習し,心臓状態の5つのカテゴリを識別できる。
論文 参考訳(メタデータ) (2022-08-02T03:14:13Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。