SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object
Detection and Tracking
- URL: http://arxiv.org/abs/2206.14451v3
- Date: Sun, 2 Jul 2023 01:11:12 GMT
- Title: SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object
Detection and Tracking
- Authors: Yining Shi, Jingyan Shen, Yifan Sun, Yunlong Wang, Jiaxin Li, Shiqi
Sun, Kun Jiang, Diange Yang
- Abstract summary: This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage fully-sparse detector that incorporates sparse queries, sparse attention with box-wise sampling, and sparse prediction.
Experiments on nuScenes dataset demonstrate that SRCN3D achieves competitive performance in both 3D object detection and multi-object tracking tasks.
- Score: 12.285423418301683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection and tracking of moving objects is an essential component in
environmental perception for autonomous driving. In the flourishing field of
multi-view 3D camera-based detectors, different transformer-based pipelines are
designed to learn queries in 3D space from 2D feature maps of perspective
views, but the dominant dense BEV query mechanism is computationally
inefficient. This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage
fully-sparse detector that incorporates sparse queries, sparse attention with
box-wise sampling, and sparse prediction. SRCN3D adopts a cascade structure
with the twin-track update of both a fixed number of query boxes and latent
query features. Our novel sparse feature sampling module only utilizes local 2D
region of interest (RoI) features calculated by the projection of 3D query
boxes for further box refinement, leading to a fully-convolutional and
deployment-friendly pipeline. For multi-object tracking, motion features, query
features and RoI features are comprehensively utilized in multi-hypotheses data
association. Extensive experiments on nuScenes dataset demonstrate that SRCN3D
achieves competitive performance in both 3D object detection and multi-object
tracking tasks, while also exhibiting superior efficiency compared to
transformer-based methods. Code and models are available at
https://github.com/synsin0/SRCN3D.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - Improving 3D Object Detection with Channel-wise Transformer [58.668922561622466]
We propose a two-stage 3D object detection framework (CT3D) with minimal hand-crafted design.
CT3D simultaneously performs proposal-aware embedding and channel-wise context aggregation.
It achieves the AP of 81.77% in the moderate car category on the KITTI test 3D detection benchmark.
arXiv Detail & Related papers (2021-08-23T02:03:40Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3D multi-object tracking plays a vital role in autonomous navigation.
Many approaches detect objects in 2D RGB sequences for tracking, which is lack of reliability when localizing objects in 3D space.
We propose a novel convolutional operation, named RelationConv, to better exploit the correlation between each pair of objects in the adjacent frames.
arXiv Detail & Related papers (2020-11-25T16:14:40Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.