SPI-GAN: Denoising Diffusion GANs with Straight-Path Interpolations
- URL: http://arxiv.org/abs/2206.14464v3
- Date: Thu, 14 Mar 2024 05:28:04 GMT
- Title: SPI-GAN: Denoising Diffusion GANs with Straight-Path Interpolations
- Authors: Jinsung Jeon, Noseong Park,
- Abstract summary: We present an enhanced GAN-based denoising method, called SPI-GAN, using our proposed straight-path definition.
SPI-GAN is one of the best-balanced models among the sampling quality, diversity, and time for CIFAR-10, and CelebA-HQ-256.
- Score: 27.487728842037935
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Score-based generative models (SGMs) show the state-of-the-art sampling quality and diversity. However, their training/sampling complexity is notoriously high due to the highly complicated forward/reverse processes, so they are not suitable for resource-limited settings. To solving this problem, learning a simpler process is gathering much attention currently. We present an enhanced GAN-based denoising method, called SPI-GAN, using our proposed straight-path interpolation definition. To this end, we propose a GAN architecture i) denoising through the straight-path and ii) characterized by a continuous mapping neural network for imitating the denoising path. This approach drastically reduces the sampling time while achieving as high sampling quality and diversity as SGMs. As a result, SPI-GAN is one of the best-balanced models among the sampling quality, diversity, and time for CIFAR-10, and CelebA-HQ-256.
Related papers
- Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing [84.97865583302244]
We propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process.
DAPS significantly improves sample quality and stability across multiple image restoration tasks.
For example, we achieve a PSNR of 30.72dB on the FFHQ 256 dataset for phase retrieval, which is an improvement of 9.12dB compared to existing methods.
arXiv Detail & Related papers (2024-07-01T17:59:23Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
We develop a new point cloud upsampling pipeline called BIMS-PU.
We decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors.
We show that our method achieves superior results to state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-25T13:13:37Z) - Accelerating Score-based Generative Models for High-Resolution Image
Synthesis [42.076244561541706]
Score-based generative models (SGMs) have recently emerged as a promising class of generative models.
In this work, we consider the acceleration of high-resolution generation with SGMs.
We introduce a novel Target Distribution Sampling Aware (TDAS) method by leveraging the structural priors in space and frequency domains.
arXiv Detail & Related papers (2022-06-08T17:41:14Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - DML-GANR: Deep Metric Learning With Generative Adversarial Network
Regularization for High Spatial Resolution Remote Sensing Image Retrieval [9.423185775609426]
We develop a deep metric learning approach with generative adversarial network regularization (DML-GANR) for HSR-RSI retrieval.
The experimental results on the three data sets demonstrate the superior performance of DML-GANR over state-of-the-art techniques in HSR-RSI retrieval.
arXiv Detail & Related papers (2020-10-07T02:26:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.