DPN-GAN: Inducing Periodic Activations in Generative Adversarial Networks for High-Fidelity Audio Synthesis
- URL: http://arxiv.org/abs/2505.09091v1
- Date: Wed, 14 May 2025 02:52:16 GMT
- Title: DPN-GAN: Inducing Periodic Activations in Generative Adversarial Networks for High-Fidelity Audio Synthesis
- Authors: Zeeshan Ahmad, Shudi Bao, Meng Chen,
- Abstract summary: We propose Deformable Periodic Network based GAN (DPN-GAN)<n>DPN-GAN incorporates a kernel-based periodic ReLU activation function to induce periodic bias in audio generation.<n>We trained two versions of the model: DPN-GAN small (38.67M parameters) and DPN-GAN large (124M parameters)
- Score: 4.834986020597738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, generative adversarial networks (GANs) have made significant progress in generating audio sequences. However, these models typically rely on bandwidth-limited mel-spectrograms, which constrain the resolution of generated audio sequences, and lead to mode collapse during conditional generation. To address this issue, we propose Deformable Periodic Network based GAN (DPN-GAN), a novel GAN architecture that incorporates a kernel-based periodic ReLU activation function to induce periodic bias in audio generation. This innovative approach enhances the model's ability to capture and reproduce intricate audio patterns. In particular, our proposed model features a DPN module for multi-resolution generation utilizing deformable convolution operations, allowing for adaptive receptive fields that improve the quality and fidelity of the synthetic audio. Additionally, we enhance the discriminator network using deformable convolution to better distinguish between real and generated samples, further refining the audio quality. We trained two versions of the model: DPN-GAN small (38.67M parameters) and DPN-GAN large (124M parameters). For evaluation, we use five different datasets, covering both speech synthesis and music generation tasks, to demonstrate the efficiency of the DPN-GAN. The experimental results demonstrate that DPN-GAN delivers superior performance on both out-of-distribution and noisy data, showcasing its robustness and adaptability. Trained across various datasets, DPN-GAN outperforms state-of-the-art GAN architectures on standard evaluation metrics, and exhibits increased robustness in synthesized audio.
Related papers
- Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
Large language models (LLMs) often produce inaccurate or misleading content-hallucinations.<n>Noise-Augmented Fine-Tuning (NoiseFiT) is a novel framework that leverages adaptive noise injection to enhance model robustness.<n>NoiseFiT selectively perturbs layers identified as either high-SNR (more robust) or low-SNR (potentially under-regularized) using a dynamically scaled Gaussian noise.
arXiv Detail & Related papers (2025-04-04T09:27:19Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
We present a diffusion-based ATR framework (DiffATR) that generates joint distribution from noise.
Experiments on the AudioCaps and Clotho datasets with superior performances, verify the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-16T06:33:26Z) - Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints [27.049330099874396]
This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model.<n>Our experimental results demonstrate significant improvements in pixel-level metrics like peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS)
arXiv Detail & Related papers (2024-07-26T02:34:25Z) - SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and
Music Synthesis [0.0]
We introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN.
We show the merits of our proposed model for speech and music synthesis on several datasets.
arXiv Detail & Related papers (2024-01-30T09:17:57Z) - DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations [13.357094648241839]
Domain-agnostic Latent Diffusion Model for INRs generates adaptive positional embeddings instead of neural networks' weights.
We develop a decomposed-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions.
Experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI.
arXiv Detail & Related papers (2024-01-23T06:21:34Z) - Adversarial Training of Denoising Diffusion Model Using Dual
Discriminators for High-Fidelity Multi-Speaker TTS [0.0]
The diffusion model is capable of generating high-quality data through a probabilistic approach.
It suffers from the drawback of slow generation speed due to the requirement of a large number of time steps.
We propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data.
arXiv Detail & Related papers (2023-08-03T07:22:04Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Diffusion Recommender Model [85.9640416600725]
We propose a novel Diffusion Recommender Model (named DiffRec) to learn the generative process in a denoising manner.<n>To retain personalized information in user interactions, DiffRec reduces the added noises and avoids corrupting users' interactions into pure noises like in image synthesis.
arXiv Detail & Related papers (2023-04-11T04:31:00Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Time-domain Speech Enhancement with Generative Adversarial Learning [53.74228907273269]
This paper proposes a new framework called Time-domain Speech Enhancement Generative Adversarial Network (TSEGAN)
TSEGAN is an extension of the generative adversarial network (GAN) in time-domain with metric evaluation to mitigate the scaling problem.
In addition, we provide a new method based on objective function mapping for the theoretical analysis of the performance of Metric GAN.
arXiv Detail & Related papers (2021-03-30T08:09:49Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.