論文の概要: Competence-based Multimodal Curriculum Learning for Medical Report
Generation
- arxiv url: http://arxiv.org/abs/2206.14579v3
- Date: Tue, 11 Apr 2023 06:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 19:15:38.456017
- Title: Competence-based Multimodal Curriculum Learning for Medical Report
Generation
- Title(参考訳): 医療レポート生成のためのコンピテンスに基づくマルチモーダルカリキュラム学習
- Authors: Fenglin Liu, Shen Ge, Yuexian Zou, Xian Wu
- Abstract要約: 本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
- 参考スコア(独自算出の注目度): 98.10763792453925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical report generation task, which targets to produce long and coherent
descriptions of medical images, has attracted growing research interests
recently. Different from the general image captioning tasks, medical report
generation is more challenging for data-driven neural models. This is mainly
due to 1) the serious data bias and 2) the limited medical data. To alleviate
the data bias and make best use of available data, we propose a
Competence-based Multimodal Curriculum Learning framework (CMCL). Specifically,
CMCL simulates the learning process of radiologists and optimizes the model in
a step by step manner. Firstly, CMCL estimates the difficulty of each training
instance and evaluates the competence of current model; Secondly, CMCL selects
the most suitable batch of training instances considering current model
competence. By iterating above two steps, CMCL can gradually improve the
model's performance. The experiments on the public IU-Xray and MIMIC-CXR
datasets show that CMCL can be incorporated into existing models to improve
their performance.
- Abstract(参考訳): 医用画像の長期的かつ一貫性のある記述を目標とする医療報告作成タスクは近年,研究の関心が高まりつつある。
一般的な画像キャプションタスクとは異なり、データ駆動ニューラルモデルでは、医療レポート生成がより難しい。
これは主に原因である
1)深刻なデータバイアスと
2) 限られた医療データ。
データのバイアスを緩和し、利用可能なデータを活用するために、能力に基づくマルチモーダルカリキュラム学習フレームワーク(cmcl)を提案する。
具体的には,放射線科医の学習過程をシミュレートし,段階的にモデルを最適化する。
第一に、cmclは各トレーニングインスタンスの難易度を推定し、現在のモデルの能力を評価する。
2つのステップを繰り返すことで、CMCLは徐々にモデルの性能を向上させることができる。
公開IU-XrayとMIMIC-CXRデータセットの実験では、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができる。
関連論文リスト
- Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
患者のデータのプライバシは、モデル更新時に古いデータの可用性を制限することが多い。
CL研究は外科領域で2つの重要な問題を見落としていた。
本稿では,多モーダル大規模言語モデル (LLM) と適応重み付け手法を用いて,これらの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-02-26T15:35:24Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML [0.7982607013768545]
Another ICU Benchmark (YAIB) は、再現性と同等の臨床ML実験を定義するためのモジュラーフレームワークである。
YAIBは、ほとんどのオープンアクセスICUデータセット(MIMIC III/IV、eICU、HiRID、AUMCdb)をサポートし、将来のICUデータセットに容易に適応できる。
データセットの選択,コホート定義,前処理が予測性能に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2023-06-08T11:16:20Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - medigan: A Python Library of Pretrained Generative Models for Enriched
Data Access in Medical Imaging [3.8568465270960264]
mediganは、オープンソースのフレームワークに依存しないPythonライブラリとして実装された、事前訓練された生成モデルのワンストップショップである。
研究者や開発者は、ほんの数行のコードでトレーニングデータを作成し、拡大し、ドメインに適応することができる。
ライブラリのスケーラビリティと設計は、統合され、容易に利用できる事前訓練された生成モデルの増加によって実証される。
論文 参考訳(メタデータ) (2022-09-28T23:45:33Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - MetaVA: Curriculum Meta-learning and Pre-fine-tuning of Deep Neural
Networks for Detecting Ventricular Arrhythmias based on ECGs [9.600976281032862]
心室不整脈(VA)は突然の心臓死の主な原因である。
グループレベルの多様性を解決するために,カリキュラム学習法(CL)を用いたモデル非依存メタラーニング(MAML)を提案する。
利用可能なECGデータセットを3つ組み合わせて実験を行った。
論文 参考訳(メタデータ) (2022-02-25T01:26:19Z) - Knowledge Distillation for Brain Tumor Segmentation [0.0]
本研究では,学習過程におけるモデルの性能とデータ量との関係について検討する。
追加データでトレーニングされた単一のモデルは、複数のモデルのアンサンブルに近いパフォーマンスを達成し、個々のメソッドより優れています。
論文 参考訳(メタデータ) (2020-02-10T12:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。