A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter
- URL: http://arxiv.org/abs/2206.14619v1
- Date: Mon, 27 Jun 2022 13:44:48 GMT
- Title: A Multilingual Dataset of COVID-19 Vaccination Attitudes on Twitter
- Authors: Ninghan Chen, Xihui Chen, Jun Pang
- Abstract summary: We describe the collection and release of a dataset of tweets related to COVID-19 vaccines.
This dataset consists of the IDs of 2,198,090 tweets collected from Western Europe, 17,934 of which are annotated with the originators' vaccination stances.
- Score: 4.696697601424039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vaccine hesitancy is considered as one main cause of the stagnant uptake
ratio of COVID-19 vaccines in Europe and the US where vaccines are sufficiently
supplied. Fast and accurate grasp of public attitudes toward vaccination is
critical to address vaccine hesitancy, and social media platforms have proved
to be an effective source of public opinions. In this paper, we describe the
collection and release of a dataset of tweets related to COVID-19 vaccines.
This dataset consists of the IDs of 2,198,090 tweets collected from Western
Europe, 17,934 of which are annotated with the originators' vaccination
stances. Our annotation will facilitate using and developing data-driven models
to extract vaccination attitudes from social media posts and thus further
confirm the power of social media in public health surveillance. To lay the
groundwork for future research, we not only perform statistical analysis and
visualisation of our dataset, but also evaluate and compare the performance of
established text-based benchmarks in vaccination stance extraction. We
demonstrate one potential use of our data in practice in tracking the temporal
changes of public COVID-19 vaccination attitudes.
Related papers
- VaxxHesitancy: A Dataset for Studying Hesitancy towards COVID-19
Vaccination on Twitter [6.061534265076204]
We create a new collection of over 3,101 tweets annotated with users' attitudes towards COVID-19 vaccination (stance)
To the best of our knowledge, these are the first dataset and model that model vaccine hesitancy as a category distinct from pro- and anti-vaccine stance.
arXiv Detail & Related papers (2023-01-17T02:00:31Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
We find that doctors are overall more positive toward the COVID-19 vaccines.
Doctors are more concerned with the effectiveness of the vaccines over newer variants.
Nurses pay more attention to the potential side effects on children.
arXiv Detail & Related papers (2022-09-11T14:22:16Z) - "Double vaccinated, 5G boosted!": Learning Attitudes towards COVID-19
Vaccination from Social Media [4.178929174617172]
We leverage the textual posts on social media to extract and track users' vaccination stances in near real time.
We integrate the recent posts of a user's social network neighbours to help detect the user's genuine attitude.
Based on our annotated dataset from Twitter, the models instantiated from our framework can increase the performance of attitude extraction by up to 23%.
arXiv Detail & Related papers (2022-06-27T17:04:56Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude
Detection in Social Media [40.61499595293957]
We propose a novel semi-supervised approach for vaccine attitude detection, called VADet.
VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.
arXiv Detail & Related papers (2022-05-06T15:24:33Z) - VaccineLies: A Natural Language Resource for Learning to Recognize
Misinformation about the COVID-19 and HPV Vaccines [0.0]
VaccineLies is a collection of tweets propagating misinformation about two vaccines: the COVID-19 vaccines and the Human Papillomavirus (HPV) vaccines.
The ability to automatically recognize misinformation targeting vaccines on Twitter depends on the availability of data resources.
arXiv Detail & Related papers (2022-02-18T22:09:38Z) - Sentiment Analysis and Topic Modeling for COVID-19 Vaccine Discussions [10.194753795363667]
We conduct an in-depth analysis of tweets related to the coronavirus vaccine on Twitter.
Results show that a majority of people are confident in the effectiveness of vaccines and are willing to get vaccinated.
Negative tweets are often associated with the complaints of vaccine shortages, side effects after injections and possible death after being vaccinated.
arXiv Detail & Related papers (2021-10-08T23:30:17Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - COVID-19 Vaccine Acceptance in the US and UK in the Early Phase of the
Pandemic: AI-Generated Vaccines Hesitancy for Minors, and the Role of
Governments [10.64167691614925]
The use of artificial intelligence in vaccine development did not influence vaccine acceptance.
Vignettes that explicitly stated the high effectiveness of vaccines led to an increase in vaccine acceptance.
arXiv Detail & Related papers (2020-06-15T06:47:13Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
We examine the extent to which the vaccination debate on Twitter is conductive to potential outreach to the vaccination hesitant.
We discover that the vaccination skeptics, as well as the advocates, reside in their own distinct "echo chambers"
At the center of these echo chambers we find the ardent supporters, for which we build highly accurate network- and content-based classifiers.
arXiv Detail & Related papers (2020-03-26T13:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.