Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2206.14666v3
- Date: Mon, 1 May 2023 15:16:41 GMT
- Title: Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning
- Authors: Anthony Coache, Sebastian Jaimungal, \'Alvaro Cartea
- Abstract summary: We develop an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks.
We also develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a novel framework to solve risk-sensitive reinforcement learning
(RL) problems where the agent optimises time-consistent dynamic spectral risk
measures. Based on the notion of conditional elicitability, our methodology
constructs (strictly consistent) scoring functions that are used as penalizers
in the estimation procedure. Our contribution is threefold: we (i) devise an
efficient approach to estimate a class of dynamic spectral risk measures with
deep neural networks, (ii) prove that these dynamic spectral risk measures may
be approximated to any arbitrary accuracy using deep neural networks, and (iii)
develop a risk-sensitive actor-critic algorithm that uses full episodes and
does not require any additional nested transitions. We compare our conceptually
improved reinforcement learning algorithm with the nested simulation approach
and illustrate its performance in two settings: statistical arbitrage and
portfolio allocation on both simulated and real data.
Related papers
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Robust Reinforcement Learning with Dynamic Distortion Risk Measures [0.0]
We devise a framework to solve robust risk-aware reinforcement learning problems.
We simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures.
We construct an actor-critic algorithm to solve this class of robust risk-aware RL problems.
arXiv Detail & Related papers (2024-09-16T08:54:59Z) - Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Risk-Sensitive Soft Actor-Critic for Robust Deep Reinforcement Learning
under Distribution Shifts [11.765000124617186]
We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage optimization problems.
We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning.
arXiv Detail & Related papers (2024-02-15T14:55:38Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Risk-Sensitive Reinforcement Learning with Exponential Criteria [0.0]
We provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them.
We introduce a novel online Actor-Critic algorithm based on solving a multiplicative Bellman equation using approximation updates.
The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
arXiv Detail & Related papers (2022-12-18T04:44:38Z) - Reinforcement Learning with Dynamic Convex Risk Measures [0.0]
We develop an approach for solving time-consistent risk-sensitive optimization problems using model-free reinforcement learning (RL)
We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules.
arXiv Detail & Related papers (2021-12-26T16:41:05Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.