Risk-Averse Certification of Bayesian Neural Networks
- URL: http://arxiv.org/abs/2411.19729v1
- Date: Fri, 29 Nov 2024 14:22:51 GMT
- Title: Risk-Averse Certification of Bayesian Neural Networks
- Authors: Xiyue Zhang, Zifan Wang, Yulong Gao, Licio Romao, Alessandro Abate, Marta Kwiatkowska,
- Abstract summary: We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.
Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.
We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
- Score: 70.44969603471903
- License:
- Abstract: In light of the inherently complex and dynamic nature of real-world environments, incorporating risk measures is crucial for the robustness evaluation of deep learning models. In this work, we propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN. Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN, represented using a set of template polytopes. To enhance robustness evaluation, we integrate a coherent distortion risk measure--Conditional Value at Risk (CVaR)--into the certification framework, providing probabilistic guarantees based on empirical distributions obtained through sampling. We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method. The results show that RAC-BNN effectively quantifies robustness under worst-performing risky scenarios, and achieves tighter certified bounds and higher efficiency in complex tasks.
Related papers
- Certifying Global Robustness for Deep Neural Networks [3.8556106468003613]
A globally deep neural network resists perturbations on all meaningful inputs.
Current robustness certification methods emphasize local robustness, struggling to scale and generalize.
This paper presents a systematic and efficient method to evaluate and verify global robustness for deep neural networks.
arXiv Detail & Related papers (2024-05-31T00:46:04Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Risk-Sensitive Reinforcement Learning with Exponential Criteria [0.0]
We provide a definition of robust reinforcement learning policies and formulate a risk-sensitive reinforcement learning problem to approximate them.
We introduce a novel online Actor-Critic algorithm based on solving a multiplicative Bellman equation using approximation updates.
The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
arXiv Detail & Related papers (2022-12-18T04:44:38Z) - Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning [0.0]
We develop an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks.
We also develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions.
arXiv Detail & Related papers (2022-06-29T14:11:15Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Regularized Training and Tight Certification for Randomized Smoothed
Classifier with Provable Robustness [15.38718018477333]
We derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart.
We also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability.
arXiv Detail & Related papers (2020-02-17T20:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.