Robust Reinforcement Learning with Dynamic Distortion Risk Measures
- URL: http://arxiv.org/abs/2409.10096v1
- Date: Mon, 16 Sep 2024 08:54:59 GMT
- Title: Robust Reinforcement Learning with Dynamic Distortion Risk Measures
- Authors: Anthony Coache, Sebastian Jaimungal,
- Abstract summary: We devise a framework to solve robust risk-aware reinforcement learning problems.
We simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures.
We construct an actor-critic algorithm to solve this class of robust risk-aware RL problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In a reinforcement learning (RL) setting, the agent's optimal strategy heavily depends on her risk preferences and the underlying model dynamics of the training environment. These two aspects influence the agent's ability to make well-informed and time-consistent decisions when facing testing environments. In this work, we devise a framework to solve robust risk-aware RL problems where we simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures. Robustness is introduced by considering all models within a Wasserstein ball around a reference model. We estimate such dynamic robust risk measures using neural networks by making use of strictly consistent scoring functions, derive policy gradient formulae using the quantile representation of distortion risk measures, and construct an actor-critic algorithm to solve this class of robust risk-aware RL problems. We demonstrate the performance of our algorithm on a portfolio allocation example.
Related papers
- Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - RASR: Risk-Averse Soft-Robust MDPs with EVaR and Entropic Risk [28.811725782388688]
We propose and analyze a new framework to jointly model the risk associated with uncertainties in finite-horizon and discounted infinite-horizon MDPs.
We show that when the risk-aversion is defined using either EVaR or the entropic risk, the optimal policy in RASR can be computed efficiently using a new dynamic program formulation with a time-dependent risk level.
arXiv Detail & Related papers (2022-09-09T00:34:58Z) - Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning [0.0]
We develop an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks.
We also develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions.
arXiv Detail & Related papers (2022-06-29T14:11:15Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Reinforcement Learning with Dynamic Convex Risk Measures [0.0]
We develop an approach for solving time-consistent risk-sensitive optimization problems using model-free reinforcement learning (RL)
We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules.
arXiv Detail & Related papers (2021-12-26T16:41:05Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Entropic Risk Constrained Soft-Robust Policy Optimization [12.362670630646805]
It is important in high-stakes domains to quantify and manage risk induced by model uncertainties.
We propose an entropic risk constrained policy gradient and actor-critic algorithms that are risk-averse to the model uncertainty.
arXiv Detail & Related papers (2020-06-20T23:48:28Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Robust Reinforcement Learning with Wasserstein Constraint [49.86490922809473]
We show the existence of optimal robust policies, provide a sensitivity analysis for the perturbations, and then design a novel robust learning algorithm.
The effectiveness of the proposed algorithm is verified in the Cart-Pole environment.
arXiv Detail & Related papers (2020-06-01T13:48:59Z) - Improving Robustness via Risk Averse Distributional Reinforcement
Learning [13.467017642143581]
Robustness is critical when the policies are trained in simulations instead of real world environment.
We propose a risk-aware algorithm to learn robust policies in order to bridge the gap between simulation training and real-world implementation.
arXiv Detail & Related papers (2020-05-01T20:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.