論文の概要: Implicit U-Net for volumetric medical image segmentation
- arxiv url: http://arxiv.org/abs/2206.15217v1
- Date: Thu, 30 Jun 2022 12:00:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 23:43:06.704017
- Title: Implicit U-Net for volumetric medical image segmentation
- Title(参考訳): ボリューム画像分割のための暗黙のu-net
- Authors: Sergio Naval Marimont and Giacomo Tarroni
- Abstract要約: Implicit U-Netは、教師付きイメージセグメンテーションタスクに効率的なImplicit Representationパラダイムを適用する。
我々の暗黙のU-Netは、同等のU-Netよりも40%少ないパラメータを持つ。
等価な完全畳み込みU-Netと比較すると、Implicit U-Netは約30%の推論とトレーニング時間を短縮する。
- 参考スコア(独自算出の注目度): 0.6294759639481189
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: U-Net has been the go-to architecture for medical image segmentation tasks,
however computational challenges arise when extending the U-Net architecture to
3D images. We propose the Implicit U-Net architecture that adapts the efficient
Implicit Representation paradigm to supervised image segmentation tasks. By
combining a convolutional feature extractor with an implicit localization
network, our implicit U-Net has 40% less parameters than the equivalent U-Net.
Moreover, we propose training and inference procedures to capitalize sparse
predictions. When comparing to an equivalent fully convolutional U-Net,
Implicit U-Net reduces by approximately 30% inference and training time as well
as training memory footprint while achieving comparable results in our
experiments with two different abdominal CT scan datasets.
- Abstract(参考訳): U-Netは医用画像分割タスクのゴーツーアーキテクチャであるが、U-Netアーキテクチャを3D画像に拡張する際には計算上の問題が発生する。
教師付き画像セグメント化タスクに効率的なインプリシット表現パラダイムを適用したインプリシットU-Netアーキテクチャを提案する。
畳み込み特徴抽出器と暗黙の局所化ネットワークを組み合わせることで、我々の暗黙のU-Netは等価なU-Netよりも40%少ないパラメータを持つ。
さらに,スパース予測を活かすためのトレーニングと推論手順を提案する。
等価な完全畳み込み型U-Netと比較すると,Implicit U-Netは約30%の推論時間とトレーニング時間とメモリフットプリントのトレーニング時間を短縮すると同時に,2つの異なる腹部CTスキャンデータセットを用いた実験で同等の結果を得た。
関連論文リスト
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
トラディショナル・エンコーダ・デコーダに基づく手法は, より小さな構造を検出でき, 境界領域を正確に分割できない。
本稿では,(1)入力の細部と正確なエッジを捉えることを学ぶ完全畳み込みネットワークKite-Netと,(2)高レベルの特徴を学習するU-Netの2つの枝を持つKiU-Netを提案する。
提案手法は,より少ないパラメータとより高速な収束の利点により,最近のすべての手法と比較して性能が向上する。
論文 参考訳(メタデータ) (2020-10-04T19:23:33Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed
Images [11.047174552053626]
MACU-Netは、マルチスケールのスキップ接続と非対称畳み込みベースのU-Netで、微細解像度のリモートセンシング画像を提供する。
本設計では,(1)低レベル・高レベルの特徴写像に含まれる意味的特徴と,(2)非対称な畳み込みブロックは,標準畳み込み層の特徴表現と特徴抽出能力を強化する。
2つのリモートセンシングデータセットで行った実験では、提案したMACU-NetがU-Net、U-NetPPL、U-Net 3+、その他のベンチマークアプローチを超越していることが示されている。
論文 参考訳(メタデータ) (2020-07-26T08:56:47Z) - U-Net Based Architecture for an Improved Multiresolution Segmentation in
Medical Images [0.0]
我々は,マルチレゾリューション・フレームワークを用いた画像分割のための完全畳み込みニューラルネットワークを提案している。
提案したアーキテクチャ(mrU-Net)では、入力画像とそのダウンサンプルバージョンをネットワーク入力として使用した。
ネットワークを4つの異なる医療データセットでトレーニングし、テストしました。
論文 参考訳(メタデータ) (2020-07-16T10:19:01Z) - DoubleU-Net: A Deep Convolutional Neural Network for Medical Image
Segmentation [1.6416058750198184]
DoubleU-Netは2つのU-Netアーキテクチャの組み合わせである。
4つの医用セグメンテーションデータセットを用いてDoubleU-Netを評価した。
論文 参考訳(メタデータ) (2020-06-08T18:38:24Z) - Medical Image Segmentation Using a U-Net type of Architecture [0.0]
我々は、U-Netのアーキテクチャとボトルネック層における教師付きトレーニング戦略を組み合わせることで、元のU-Netアーキテクチャと同等の結果が得られると論じる。
我々は,U-Netのエンコーダブランチのボトルネックに対して,完全に教師付きFC層に基づくピクセルワイズロスを導入する。
2層ベースのFCサブネットは、より多くのセマンティック情報を含むようにボトルネック表現をトレーニングし、デコーダ層が最終的なセグメンテーションマップを予測するために使用する。
論文 参考訳(メタデータ) (2020-05-11T16:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。