Benchmark Dataset for Precipitation Forecasting by Post-Processing the
Numerical Weather Prediction
- URL: http://arxiv.org/abs/2206.15241v1
- Date: Thu, 30 Jun 2022 12:41:32 GMT
- Title: Benchmark Dataset for Precipitation Forecasting by Post-Processing the
Numerical Weather Prediction
- Authors: Taehyeon Kim, Namgyu Ho, Donggyu Kim, Se-Young Yun
- Abstract summary: We present a hybrid NWP-DL workflow to fill the gap between standalone NWP and DL approaches.
Under this workflow, the NWP output is fed into a deep model, which post-processes the data to yield a refined precipitation forecast.
We present a novel dataset focused on the Korean Peninsula, comprised of NWP predictions and AWS observations.
- Score: 11.52104902059751
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Precipitation forecasting is an important scientific challenge that has
wide-reaching impacts on society. Historically, this challenge has been tackled
using numerical weather prediction (NWP) models, grounded on physics-based
simulations. Recently, many works have proposed an alternative approach, using
end-to-end deep learning (DL) models to replace physics-based NWP. While these
DL methods show improved performance and computational efficiency, they exhibit
limitations in long-term forecasting and lack the explainability of NWP models.
In this work, we present a hybrid NWP-DL workflow to fill the gap between
standalone NWP and DL approaches. Under this workflow, the NWP output is fed
into a deep model, which post-processes the data to yield a refined
precipitation forecast. The deep model is trained with supervision, using
Automatic Weather Station (AWS) observations as ground-truth labels. This can
achieve the best of both worlds, and can even benefit from future improvements
in NWP technology. To facilitate study in this direction, we present a novel
dataset focused on the Korean Peninsula, termed KoMet (Korea Meteorological
Dataset), comprised of NWP predictions and AWS observations. For NWP, we use
the Global Data Assimilation and Prediction Systems-Korea Integrated Model
(GDAPS-KIM).
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes and Atmospheric Dynamics [41.00712556599439]
We compare and contrast the most prominent Deep Learning Weather Prediction models, along with their backbones.
We accomplish this by predicting synthetic two-dimensional incompressible Navier-Stokes and real-world global weather dynamics.
For long-ranged weather rollouts of up to 365 days, we observe superior stability and physical soundness in architectures that formulate a spherical data representation.
arXiv Detail & Related papers (2024-07-19T08:59:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
This study illustrates the relative strengths and weaknesses of physics-based and AI-based approaches to weather prediction.
A hybrid NWP-AI system is proposed, wherein GEM-predicted large-scale state variables are spectrally nudged toward GraphCast predictions.
Results indicate that this hybrid approach is capable of leveraging the strengths of GraphCast to enhance the prediction skill of the GEM model.
arXiv Detail & Related papers (2024-07-08T16:39:25Z) - Aardvark weather: end-to-end data-driven weather forecasting [30.219727555662267]
Aardvark Weather is an end-to-end data-driven weather prediction system.
It ingests raw observations and outputs global gridded forecasts and local station forecasts.
It can be optimised end-to-end to maximise performance over quantities of interest.
arXiv Detail & Related papers (2024-03-30T16:41:24Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task.
We introduce the textbfPostRainBench, a comprehensive multi-variable NWP post-processing benchmark, and textbfCAMT, a simple yet effective Channel Attention Enhanced Multi-task Learning framework.
Our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions.
arXiv Detail & Related papers (2023-10-04T09:27:39Z) - Verification against in-situ observations for Data-Driven Weather
Prediction [0.14504054468850663]
Data-driven weather prediction models (DDWPs) have made rapid strides in recent years.
There remains work to be done in rigorously evaluating DDWPs in a true operational setting.
We present a robust dataset of in-situ observations derived from the NOAA MADIS program to serve as a benchmark to validate DDWPs in an operational setting.
arXiv Detail & Related papers (2023-04-28T18:58:36Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.