論文の概要: Learning Functions on Multiple Sets using Multi-Set Transformers
- arxiv url: http://arxiv.org/abs/2206.15444v1
- Date: Thu, 30 Jun 2022 17:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 17:17:51.837790
- Title: Learning Functions on Multiple Sets using Multi-Set Transformers
- Title(参考訳): マルチセット変圧器を用いた複数集合の学習関数
- Authors: Kira Selby, Ahmad Rashid, Ivan Kobyzev, Mehdi Rezagholizadeh and
Pascal Poupart
- Abstract要約: 我々は、このアーキテクチャを任意の次元の要素の集合に次元同値で一般化する方法を示す。
我々のアーキテクチャはこれらの関数の普遍的な近似器であり、様々なタスクにおける既存の手法に優れた結果を示す。
- 参考スコア(独自算出の注目度): 31.09791656949115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a general deep architecture for learning functions on multiple
permutation-invariant sets. We also show how to generalize this architecture to
sets of elements of any dimension by dimension equivariance. We demonstrate
that our architecture is a universal approximator of these functions, and show
superior results to existing methods on a variety of tasks including counting
tasks, alignment tasks, distinguishability tasks and statistical distance
measurements. This last task is quite important in Machine Learning. Although
our approach is quite general, we demonstrate that it can generate approximate
estimates of KL divergence and mutual information that are more accurate than
previous techniques that are specifically designed to approximate those
statistical distances.
- Abstract(参考訳): 複数の置換不変集合上の関数を学習するための一般的な深層アーキテクチャを提案する。
また、このアーキテクチャを任意の次元の要素の集合に次元同値で一般化する方法を示す。
提案手法は,これらの関数の普遍的近似であり,計数タスク,アライメントタスク,識別タスク,統計距離測定など,様々なタスクにおいて既存の手法よりも優れた結果を示す。
この最後のタスクは機械学習において非常に重要です。
提案手法は非常に一般的なものであるが,統計的距離を近似するように特別に設計された従来の手法よりも精度の高いkl発散と相互情報の近似推定を生成できることを実証する。
関連論文リスト
- A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
ハイパースペクトル画像上で複数の分類タスクと回帰タスクを同時に行うマルチタスク深層学習モデルを提案する。
我々は、TAIGAと呼ばれる大規模なハイパースペクトルデータセットに対するアプローチを検証した。
結果の総合的定性的および定量的分析により,提案手法が他の最先端手法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2024-07-23T11:14:54Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning [39.4348419684885]
マルチタスク学習(MTL)は、複数のタスクを効率的に解決する単一のモデルを学習することを目的としている。
ベイジアン推論を用いた新しい勾配集約手法を提案する。
さまざまなデータセットで,アプローチのメリットを実証的に実証しています。
論文 参考訳(メタデータ) (2024-02-06T14:00:43Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
マルチタスク学習は、多様なタスクによく機能する関数の集合を取得することを目的としている。
本稿では,2つの極端な学習シナリオ,すなわちすべてのタスクに対する単一関数と,他のタスクを無視するタスク固有関数から直感を抽出する。
本稿では,集中関数に対するドメイン固有解を強制する制約付き学習定式化を導入する。
論文 参考訳(メタデータ) (2022-10-27T16:06:47Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
我々はUni-Perceiverという汎用認識アーキテクチャを提案する。
様々なモダリティやタスクを、統一されたモデリングと共有パラメータで処理します。
その結果、チューニングなしで事前学習したモデルは、新しいタスクでも合理的なパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2021-12-02T18:59:50Z) - Learning Aggregation Functions [78.47770735205134]
任意の濃度の集合に対する学習可能なアグリゲータであるLAF(Learning Aggregation Function)を紹介する。
半合成および実データを用いて,LAFが最先端の和(max-)分解アーキテクチャより優れていることを示す実験を報告する。
論文 参考訳(メタデータ) (2020-12-15T18:28:53Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。