Variational Inference for Additive Main and Multiplicative Interaction
Effects Models
- URL: http://arxiv.org/abs/2207.00011v1
- Date: Wed, 29 Jun 2022 22:58:12 GMT
- Title: Variational Inference for Additive Main and Multiplicative Interaction
Effects Models
- Authors: Ant\^Onia A. L. Dos Santos, Rafael A. Moral, Danilo A. Sarti, Andrew
C. Parnell
- Abstract summary: In plant breeding the presence of a genotype by environment (GxE) interaction has a strong impact on cultivation decision making.
In this article, we consider a variational inference approach for such a model.
We derive variational approximations for estimating the parameters and we compare the approximations to MCMC using both simulated and real data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In plant breeding the presence of a genotype by environment (GxE) interaction
has a strong impact on cultivation decision making and the introduction of new
crop cultivars. The combination of linear and bilinear terms has been shown to
be very useful in modelling this type of data. A widely-used approach to
identify GxE is the Additive Main Effects and Multiplicative Interaction
Effects (AMMI) model. However, as data frequently can be high-dimensional,
Markov chain Monte Carlo (MCMC) approaches can be computationally infeasible.
In this article, we consider a variational inference approach for such a model.
We derive variational approximations for estimating the parameters and we
compare the approximations to MCMC using both simulated and real data. The new
inferential framework we propose is on average two times faster whilst
maintaining the same predictive performance as MCMC.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
We develop an estimator that adapts well to two-way interaction terms in a regression model.
We evaluate the potential of the model for inference, which is notoriously hard for selection strategies.
Our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes.
arXiv Detail & Related papers (2023-09-25T10:03:39Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
We present a novel extension of multi-task Gaussian Cox processes for modeling heterogeneous correlated tasks jointly.
A MOGP prior over the parameters of the dedicated likelihoods for classification, regression and point process tasks can facilitate sharing of information between heterogeneous tasks.
We derive a mean-field approximation to realize closed-form iterative updates for estimating model parameters.
arXiv Detail & Related papers (2023-08-29T15:01:01Z) - Bayesian Additive Main Effects and Multiplicative Interaction Models
using Tensor Regression for Multi-environmental Trials [0.0]
We propose a Bayesian tensor regression model to accommodate the effect of multiple factors on phenotype prediction.
We adopt a set of prior distributions that resolve identifiability issues that may arise between the parameters in the model.
We explore the applicability of our model by analysing real-world data related to wheat production across Ireland from 2010 to 2019.
arXiv Detail & Related papers (2023-01-09T19:54:50Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - MCCE: Monte Carlo sampling of realistic counterfactual explanations [2.156170153103442]
MCCE is a novel on-manifold, actionable and valid counterfactual explanation method.
It generates on-manifold, actionable and valid counterfactuals by modeling the joint distribution of the mutable features.
We compare MCCE with a range of state-of-the-art on-manifold counterfactual methods using four well-known data sets.
arXiv Detail & Related papers (2021-11-18T16:40:44Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
approach [0.76146285961466]
Gaussian processes (GPs) are frequently used in machine learning and statistics to construct powerful models.
We propose a pseudo-marginal (PM) scheme that offers exact inference as well as computational gains through doubly estimators for the likelihood and large datasets.
arXiv Detail & Related papers (2021-03-04T20:48:29Z) - Scaling Bayesian inference of mixed multinomial logit models to very
large datasets [9.442139459221785]
We propose an Amortized Variational Inference approach that leverages backpropagation, automatic differentiation and GPU-accelerated computation.
We show how normalizing flows can be used to increase the flexibility of the variational posterior approximations.
arXiv Detail & Related papers (2020-04-11T15:30:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.