論文の概要: Modularity Optimization as a Training Criterion for Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2207.00107v1
- Date: Thu, 30 Jun 2022 21:32:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-04 14:57:34.667917
- Title: Modularity Optimization as a Training Criterion for Graph Neural
Networks
- Title(参考訳): グラフニューラルネットワークのトレーニング基準としてのモジュラリティ最適化
- Authors: Tsuyoshi Murata and Naveed Afzal
- Abstract要約: グラフ畳み込みモデルにおけるネットワークのコミュニティ構造保存目的を組み込んだ学習表現の質に及ぼす効果について検討する。
2つの属性付きビビログラフィーネットワークの実験的評価により、コミュニティ保存目的の組み入れにより、スパースラベル方式における半教師付きノード分類精度が向上することが示された。
- 参考スコア(独自算出の注目度): 2.903711704663904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolution is a recent scalable method for performing deep feature
learning on attributed graphs by aggregating local node information over
multiple layers. Such layers only consider attribute information of node
neighbors in the forward model and do not incorporate knowledge of global
network structure in the learning task. In particular, the modularity function
provides a convenient source of information about the community structure of
networks. In this work we investigate the effect on the quality of learned
representations by the incorporation of community structure preservation
objectives of networks in the graph convolutional model. We incorporate the
objectives in two ways, through an explicit regularization term in the cost
function in the output layer and as an additional loss term computed via an
auxiliary layer. We report the effect of community structure preserving terms
in the graph convolutional architectures. Experimental evaluation on two
attributed bibilographic networks showed that the incorporation of the
community-preserving objective improves semi-supervised node classification
accuracy in the sparse label regime.
- Abstract(参考訳): グラフ畳み込み(Graph convolution)は、複数のレイヤにまたがるローカルノード情報を集約することで、属性付きグラフで深い特徴学習を行う、最近のスケーラブルな方法である。
このようなレイヤはフォワードモデルにおけるノードの隣人の属性情報のみを考慮し、学習タスクにグローバルネットワーク構造に関する知識を取り入れない。
特にモジュラリティ機能は、ネットワークのコミュニティ構造に関する情報の便利な情報源を提供する。
本研究では,グラフ畳み込みモデルにおけるネットワークのコミュニティ構造保存目標の組み入れによる学習表現の質への影響について検討する。
この目的を、出力層のコスト関数における明示的な正規化項と、補助層を介して計算される追加の損失項の2つの方法で取り入れる。
グラフ畳み込みアーキテクチャにおけるコミュニティ構造保存用語の効果について報告する。
推定された2つのバイビログラフネットワークの実験的評価により,コミュニティ保存目標の定式化により,半教師ありノード分類精度が向上した。
関連論文リスト
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。