論文の概要: Structure-Preserving Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2209.00793v1
- Date: Fri, 2 Sep 2022 02:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 11:57:32.491011
- Title: Structure-Preserving Graph Representation Learning
- Title(参考訳): 構造保存グラフ表現学習
- Authors: Ruiyi Fang, Liangjian Wen, Zhao Kang, Jianzhuang Liu
- Abstract要約: 本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
- 参考スコア(独自算出の注目度): 43.43429108503634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Though graph representation learning (GRL) has made significant progress, it
is still a challenge to extract and embed the rich topological structure and
feature information in an adequate way. Most existing methods focus on local
structure and fail to fully incorporate the global topological structure. To
this end, we propose a novel Structure-Preserving Graph Representation Learning
(SPGRL) method, to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original
graph, we construct a feature graph as a complementary view via k-Nearest
Neighbor method. The feature graph can be used to contrast at node-level to
capture the local relation. Besides, we retain the global topological structure
information by maximizing the mutual information (MI) of the whole graph and
feature embeddings, which is theoretically reduced to exchanging the feature
embeddings of the feature and the original graphs to reconstruct themselves.
Extensive experiments show that our method has quite superior performance on
semi-supervised node classification task and excellent robustness under noise
perturbation on graph structure or node features.
- Abstract(参考訳): グラフ表現学習(GRL)は大きな進歩を遂げているが、リッチなトポロジ構造と特徴情報を適切な方法で抽出し埋め込むことは依然として困難である。
既存の手法のほとんどは局所構造に焦点をあて、グローバルな位相構造を完全に組み込むことができない。
そこで本研究では,グラフの構造情報を完全に把握する新しい構造保存グラフ表現学習法を提案する。
具体的には、元のグラフの不確実性と誤情報を減らすために、k-nearest neighborメソッドによる補完的ビューとして特徴グラフを構築する。
特徴グラフは、ノードレベルでのコントラストを使ってローカルな関係を捉えることができる。
また、全グラフの相互情報(mi)を最大化し、特徴埋め込みを最大化することにより、大域的な位相構造情報を保持し、理論的には特徴埋め込みと元のグラフの特徴埋め込みを交換して自己を再構築する。
提案手法は,半教師付きノード分類タスクにおいて非常に優れた性能を示し,グラフ構造やノード特徴のノイズ摂動下でのロバスト性も良好であることを示す。
関連論文リスト
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
我々は,TextitGlobal-augmented Graph Structure Learning (GaGSL) という新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
論文 参考訳(メタデータ) (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから表現を分析し学習するための強力なツールとして登場した。
GNNの卓越した性能にとって重要な前提条件は、完全なグラフ情報の提供である。
本研究では,特徴と構造間の相互利益学習を実装した相互二重ストリームグラフニューラルネットワーク(MDS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-08-09T03:42:56Z) - Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - Graph Data Condensation via Self-expressive Graph Structure Reconstruction [7.4525875528900665]
我々は textbfSelf-presentive Graph Structure textbfReconstruction による textbfGraph Data textbfCondensation という新しいフレームワークを紹介した。
提案手法は,元のグラフ構造を凝縮過程に明示的に組み込んで,凝縮ノード間の不規則な相互依存性を捕捉する。
論文 参考訳(メタデータ) (2024-03-12T03:54:25Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
グラフ表現学習に自己教師付き学習機構を導入する。
本稿では,新しい自己教師型コンセンサス表現学習フレームワークを提案する。
提案手法はトポロジグラフと特徴グラフの2つの視点からグラフを扱う。
論文 参考訳(メタデータ) (2021-08-10T07:53:09Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。