Modularity Optimization as a Training Criterion for Graph Neural
Networks
- URL: http://arxiv.org/abs/2207.00107v1
- Date: Thu, 30 Jun 2022 21:32:33 GMT
- Title: Modularity Optimization as a Training Criterion for Graph Neural
Networks
- Authors: Tsuyoshi Murata and Naveed Afzal
- Abstract summary: We investigate the effect on the quality of learned representations by the incorporation of community structure preservation objectives of networks in the graph convolutional model.
Experimental evaluation on two attributed bibilographic networks showed that the incorporation of the community-preserving objective improves semi-supervised node classification accuracy in the sparse label regime.
- Score: 2.903711704663904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolution is a recent scalable method for performing deep feature
learning on attributed graphs by aggregating local node information over
multiple layers. Such layers only consider attribute information of node
neighbors in the forward model and do not incorporate knowledge of global
network structure in the learning task. In particular, the modularity function
provides a convenient source of information about the community structure of
networks. In this work we investigate the effect on the quality of learned
representations by the incorporation of community structure preservation
objectives of networks in the graph convolutional model. We incorporate the
objectives in two ways, through an explicit regularization term in the cost
function in the output layer and as an additional loss term computed via an
auxiliary layer. We report the effect of community structure preserving terms
in the graph convolutional architectures. Experimental evaluation on two
attributed bibilographic networks showed that the incorporation of the
community-preserving objective improves semi-supervised node classification
accuracy in the sparse label regime.
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
Graph Neural Networks (GNNs) have attracted increasing attention in recent years.
Recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph.
We propose a novel framework for semi-supervised classification.
arXiv Detail & Related papers (2022-12-04T06:17:11Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
We propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method to fully capture the structure information of graphs.
Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method.
Our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.
arXiv Detail & Related papers (2022-09-02T02:49:19Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Hierarchical Graph Capsule Network [78.4325268572233]
We propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies.
To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole)
arXiv Detail & Related papers (2020-12-16T04:13:26Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.