論文の概要: Better Methods and Theory for Federated Learning: Compression, Client
Selection and Heterogeneity
- arxiv url: http://arxiv.org/abs/2207.00392v1
- Date: Fri, 1 Jul 2022 12:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-04 12:43:48.157426
- Title: Better Methods and Theory for Federated Learning: Compression, Client
Selection and Heterogeneity
- Title(参考訳): フェデレーション学習のためのより良い方法と理論:圧縮,クライアント選択,不均一性
- Authors: Samuel Horv\'ath
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、携帯電話デバイスなど複数のクライアントが関与する機械学習パラダイムである。
本稿では,これらの課題のいくつかを特定し,数学的に厳密な保証によって支援された実用的FLソリューションの実現を究極の目標とする新しい手法とアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging machine learning paradigm involving
multiple clients, e.g., mobile phone devices, with an incentive to collaborate
in solving a machine learning problem coordinated by a central server. FL was
proposed in 2016 by Kone\v{c}n\'{y} et al. and McMahan et al. as a viable
privacy-preserving alternative to traditional centralized machine learning
since, by construction, the training data points are decentralized and never
transferred by the clients to a central server. Therefore, to a certain degree,
FL mitigates the privacy risks associated with centralized data collection.
Unfortunately, optimization for FL faces several specific issues that
centralized optimization usually does not need to handle. In this thesis, we
identify several of these challenges and propose new methods and algorithms to
address them, with the ultimate goal of enabling practical FL solutions
supported with mathematically rigorous guarantees.
- Abstract(参考訳): フェデレーション学習(federated learning、fl)は、中央サーバが協調する機械学習問題を解決するために協力するインセンティブを持つ、携帯電話などの複数のクライアントを含む、新興の機械学習パラダイムである。
FL は2016年に Kone\v{c}n\'{y} et al. と McMahan et al. によって、従来の中央集中型機械学習に代わる実用的なプライバシー保護として提案された。
したがって、FLは中央集権データ収集に関連するプライバシーリスクをある程度軽減する。
残念ながら、FLの最適化は、中央集権最適化が通常処理する必要のないいくつかの特定の問題に直面している。
本稿では,これらの課題のいくつかを特定し,数学的に厳密な保証によって支援された実用的FLソリューションの実現を究極の目標とする新しい手法とアルゴリズムを提案する。
関連論文リスト
- A Framework for testing Federated Learning algorithms using an edge-like environment [0.0]
フェデレーテッド・ラーニング(FL)は、多くのクライアントが、データをプライベートかつ分散化しながら、単一の集中型モデルを協調的にトレーニングする機械学習パラダイムである。
グローバル集中型モデルアグリゲーションにおける局所モデルの貢献を正確に評価するのは簡単ではない。
これはFLにおける大きな挑戦の例であり、一般にデータ不均衡またはクラス不均衡として知られている。
本研究では,FLアルゴリズムをより容易かつスケーラブルに評価するためのフレームワークを提案し,実装した。
論文 参考訳(メタデータ) (2024-07-17T19:52:53Z) - Fantastyc: Blockchain-based Federated Learning Made Secure and Practical [0.7083294473439816]
フェデレートラーニング(Federated Learning)は、クライアントがローカルデータを共有せずに、中央サーバのオーケストレーション下で機械学習モデルを協調的にトレーニングすることを可能にする分散フレームワークである。
このフレームワークの中心性は、ブロックチェーンベースのフェデレーション学習アプローチによって、文献で扱われる障害点を表している。
この課題に対処するために設計されたFantastycを提案する。
論文 参考訳(メタデータ) (2024-06-05T20:01:49Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - A Survey on Decentralized Federated Learning [0.709016563801433]
近年、フェデレーション学習は、分散、大規模、プライバシ保護機械学習(ML)システムのトレーニングにおいて一般的なパラダイムとなっている。
典型的なFLシステムでは、中央サーバはオーケストレータとしてのみ機能し、各クライアントによって訓練されたすべてのローカルモデルを、収束するまで反復的に収集し集約する。
最も重要な課題の1つは、古典的なFLクライアントサーバアーキテクチャの集中的なオーケストレーションを克服することである。
すべてのFLクライアントが中央サーバなしで協力し、通信する分散FLソリューションが登場しました。
論文 参考訳(メタデータ) (2023-08-08T22:07:15Z) - Multi-Tier Client Selection for Mobile Federated Learning Networks [13.809694368802827]
本稿では、コストを最小化し、高品質なFLモデルを訓練するために、SocFedCS (Underated UnderlineClient UnderlineSelection) アプローチを提案する。
SocFedCSは、データ所有者がローカルな信頼ネットワークを通じてFLタスク情報を伝達できるようにすることで、候補FLクライアントプールを豊かにする。
論文 参考訳(メタデータ) (2023-05-11T15:06:08Z) - Federated Gradient Matching Pursuit [17.695717854068715]
従来の機械学習技術では、1つのサーバまたはデータハブ上のすべてのトレーニングデータを集中化する必要がある。
特に、FL(Federated Learning)は、ローカルクライアントでトレーニングデータを保持しながら、共有モデルを学習するためのソリューションを提供する。
本稿では,FL設定における分散制約最小化問題を解くために,新しいアルゴリズムフレームワークFedGradMPを提案する。
論文 参考訳(メタデータ) (2023-02-20T16:26:29Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。