論文の概要: Fantastyc: Blockchain-based Federated Learning Made Secure and Practical
- arxiv url: http://arxiv.org/abs/2406.03608v2
- Date: Mon, 29 Jul 2024 14:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 22:58:37.446170
- Title: Fantastyc: Blockchain-based Federated Learning Made Secure and Practical
- Title(参考訳): Fantastyc: ブロックチェーンベースのフェデレーションラーニングはセキュアで実践的
- Authors: William Boitier, Antonella Del Pozzo, Álvaro García-Pérez, Stephane Gazut, Pierre Jobic, Alexis Lemaire, Erwan Mahe, Aurelien Mayoue, Maxence Perion, Tuanir Franca Rezende, Deepika Singh, Sara Tucci-Piergiovanni,
- Abstract要約: フェデレートラーニング(Federated Learning)は、クライアントがローカルデータを共有せずに、中央サーバのオーケストレーション下で機械学習モデルを協調的にトレーニングすることを可能にする分散フレームワークである。
このフレームワークの中心性は、ブロックチェーンベースのフェデレーション学習アプローチによって、文献で扱われる障害点を表している。
この課題に対処するために設計されたFantastycを提案する。
- 参考スコア(独自算出の注目度): 0.7083294473439816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning is a decentralized framework that enables multiple clients to collaboratively train a machine learning model under the orchestration of a central server without sharing their local data. The centrality of this framework represents a point of failure which is addressed in literature by blockchain-based federated learning approaches. While ensuring a fully-decentralized solution with traceability, such approaches still face several challenges about integrity, confidentiality and scalability to be practically deployed. In this paper, we propose Fantastyc, a solution designed to address these challenges that have been never met together in the state of the art.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、複数のクライアントが、ローカルデータを共有せずに、中央サーバのオーケストレーションの下で機械学習モデルを協調的にトレーニングすることを可能にする分散フレームワークである。
このフレームワークの中心性は、ブロックチェーンベースのフェデレーション学習アプローチによって、文献で扱われる障害点を表している。
トレーサビリティを備えた完全な分散ソリューションを保証する一方で、そのようなアプローチは、事実上デプロイされる完全性、機密性、スケーラビリティに関するいくつかの課題に直面している。
本稿では,この課題に対処するためのFantastycを提案する。
関連論文リスト
- Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
本論文は, 信頼金化機構を通じて参加ノードの信頼性を高めることに焦点を当てている。
提案システムは、データのプライバシーを損なうことなく、協調的な機械学習のための公正でセキュアで透明な環境を構築することを目的としている。
論文 参考訳(メタデータ) (2023-10-30T06:05:50Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - Better Methods and Theory for Federated Learning: Compression, Client
Selection and Heterogeneity [0.0]
フェデレートラーニング(Federated Learning, FL)は、携帯電話デバイスなど複数のクライアントが関与する機械学習パラダイムである。
本稿では,これらの課題のいくつかを特定し,数学的に厳密な保証によって支援された実用的FLソリューションの実現を究極の目標とする新しい手法とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-07-01T12:55:09Z) - On the (In)security of Peer-to-Peer Decentralized Machine Learning [16.671864590599288]
我々は、受動的・能動的に非中央集権的な敵に対して、新しい攻撃群を紹介した。
分散学習の提案者による主張とは裏腹に、分散学習は連合学習よりもセキュリティ上の優位性を提供していないことを実証する。
論文 参考訳(メタデータ) (2022-05-17T15:36:50Z) - Byzantine-Robust Decentralized Learning via ClippedGossip [61.03711813598128]
ビザンチン・ロバスト・コンセンサス最適化のためのClippedGossipアルゴリズムを提案する。
ClippedGossipの実証実験性能を多数の攻撃下で実証した。
論文 参考訳(メタデータ) (2022-02-03T12:04:36Z) - RobustFed: A Truth Inference Approach for Robust Federated Learning [9.316565110931743]
フェデレートラーニング(Federated Learning)は、クライアントが中央サーバのオーケストレーションの下で協調的にグローバルなモデルをトレーニングすることを可能にするフレームワークである。
統合学習における集約ステップは、中央サーバがクライアントの動作を管理することができないため、敵攻撃に対して脆弱である。
本稿では,クラウドソーシングにおける真理推論手法に着想を得た新しいロバスト集約アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-18T09:34:57Z) - Secure Distributed Training at Scale [65.7538150168154]
ピアの存在下でのトレーニングには、ビザンティン寛容な特殊な分散トレーニングアルゴリズムが必要である。
本稿では,コミュニケーション効率を重視したセキュアな(ビザンチン耐性)分散トレーニングのための新しいプロトコルを提案する。
論文 参考訳(メタデータ) (2021-06-21T17:00:42Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
分散学習システムのビザンチンレジリエンスに関する詳細な研究について述べる。
ビザンチンフォールトトレランスを用いた分散学習を支援する新しいアルゴリズムUBARを提案する。
論文 参考訳(メタデータ) (2020-02-20T05:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。