論文の概要: Ultra-low latency recurrent neural network inference on FPGAs for
physics applications with hls4ml
- arxiv url: http://arxiv.org/abs/2207.00559v1
- Date: Fri, 1 Jul 2022 17:19:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-04 14:07:33.506940
- Title: Ultra-low latency recurrent neural network inference on FPGAs for
physics applications with hls4ml
- Title(参考訳): hls4ml物理応用のためのFPGA上の超低レイテンシリカレントニューラルネットワーク推論
- Authors: Elham E Khoda, Dylan Rankin, Rafael Teixeira de Lima, Philip Harris,
Scott Hauck, Shih-Chieh Hsu, Michael Kagan, Vladimir Loncar, Chaitanya
Paikara, Richa Rao, Sioni Summers, Caterina Vernieri, Aaron Wang
- Abstract要約: 本稿では,hls4mlフレームワーク内に2種類のリカレントニューラルネットワーク層 – 長期記憶とゲート再カレントユニット – を実装する。
CERN大型ハドロン衝突型加速器におけるジェット識別タスクに特化して訓練された複数のニューラルネットワークの性能と合成設計について述べる。
- 参考スコア(独自算出の注目度): 8.085746138965975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks have been shown to be effective architectures for
many tasks in high energy physics, and thus have been widely adopted. Their use
in low-latency environments has, however, been limited as a result of the
difficulties of implementing recurrent architectures on field-programmable gate
arrays (FPGAs). In this paper we present an implementation of two types of
recurrent neural network layers -- long short-term memory and gated recurrent
unit -- within the hls4ml framework. We demonstrate that our implementation is
capable of producing effective designs for both small and large models, and can
be customized to meet specific design requirements for inference latencies and
FPGA resources. We show the performance and synthesized designs for multiple
neural networks, many of which are trained specifically for jet identification
tasks at the CERN Large Hadron Collider.
- Abstract(参考訳): リカレントニューラルネットワークは高エネルギー物理学における多くのタスクに有効なアーキテクチャであることが示されており、広く採用されている。
しかし、低レイテンシ環境での使用は、フィールドプログラマブルゲートアレイ(FPGA)上で繰り返しアーキテクチャを実装することの難しさから制限されている。
本稿では,hls4mlフレームワーク内での2種類のリカレントニューラルネットワーク層 – 長期記憶とゲート再カレントユニット – の実装について述べる。
本実装では,小型モデルと大規模モデルの両方で効率的な設計が可能であることを実証し,推論待ち時間やFPGAリソースの特定の設計要件を満たすようにカスタマイズ可能であることを示す。
CERN大型ハドロン衝突型加速器におけるジェット識別タスクに特化して訓練された複数のニューラルネットワークの性能と合成設計について述べる。
関連論文リスト
- Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
本研究は,粒子検出器のための低グラフニューラルネットワーク(LL-GNN)設計のための新しい再構成可能なアーキテクチャを提案する。
LL-GNNの設計は、洗練されたアルゴリズムが実験データを効率的に処理できるようにすることで、次世代のトリガーシステムを進化させる。
論文 参考訳(メタデータ) (2022-09-28T12:55:35Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - High-Performance FPGA-based Accelerator for Bayesian Recurrent Neural
Networks [2.0631735969348064]
本稿では,ベイジアンLSTMベースのRNNを高速化するFPGAベースのハードウェア設計を提案する。
GPU実装と比較して、FPGAベースの設計では、最大106倍のエネルギー効率で10倍のスピードアップを実現できます。
論文 参考訳(メタデータ) (2021-06-04T14:30:39Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
本研究は,d$2$nnsでロバストかつノイズ耐性のあるマルチタスク学習を実現する,新しいハードウェアソフトウェア共同設計手法を提案する。
私たちの実験結果は、汎用性とハードウェア効率の大幅な改善を示し、提案されたマルチタスクD$2$NNアーキテクチャの堅牢性を実証します。
論文 参考訳(メタデータ) (2020-12-16T12:29:54Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
FPGA上で1$mumathrms未満のレイテンシで実行できる距離重み付きグラフネットワークの設計方法について論じる。
本研究では,粒子衝突型加速器で動作する次世代熱量計における粒子の再構成と同定に関連する代表的課題について考察する。
我々は、圧縮されたモデルをファームウェアに変換し、FPGA上で実装する。
論文 参考訳(メタデータ) (2020-08-08T21:26:31Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - LogicNets: Co-Designed Neural Networks and Circuits for
Extreme-Throughput Applications [6.9276012494882835]
本稿では,高効率FPGA実装に直接マップするニューラルネットワークトポロジを設計する新しい手法を提案する。
その結果,低ビット化と疎結合化の両立により,論理深度が小さく,LUTコストが低い高速回路が実現された。
論文 参考訳(メタデータ) (2020-04-06T22:15:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。