論文の概要: Accelerating System-Level Debug Using Rule Learning and Subgroup Discovery Techniques
- arxiv url: http://arxiv.org/abs/2207.00622v2
- Date: Sat, 1 Jun 2024 21:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 23:55:24.642192
- Title: Accelerating System-Level Debug Using Rule Learning and Subgroup Discovery Techniques
- Title(参考訳): ルール学習とサブグループ探索技術を用いたシステムレベルデバッグの高速化
- Authors: Zurab Khasidashvili,
- Abstract要約: デバッグの労力を減らすために、高品質なデバッグヒントを提供する方法について説明する。
ケーススタディでは,これらの手法をパワーマネジメント (PM) 設計機能であるPackage-C8の根源的故障に応用した。
本稿では,ルートキャスティングの経験と再利用の成果をマイニングし,将来のデバッグ活動を加速し,検証専門家への依存を減らすためのアプローチを提案する。
- 参考スコア(独自算出の注目度): 1.6317061277457001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a root-causing procedure for accelerating system-level debug using rule-based techniques. We describe the procedure and how it provides high quality debug hints for reducing the debug effort. This includes the heuristics for engineering features from logs of many tests, and the data analytics techniques for generating powerful debug hints. As a case study, we used these techniques for root-causing failures of the Power Management (PM) design feature Package-C8 and showed their effectiveness. Furthermore, we propose an approach for mining the root-causing experience and results for reuse, to accelerate future debug activities and reduce dependency on validation experts. We believe that these techniques are beneficial also for other validation activities at different levels of abstraction, for complex hardware, software and firmware systems, both pre-silicon and post-silicon.
- Abstract(参考訳): 本稿では,ルールベースの手法を用いて,システムレベルのデバッグを高速化するルートキャスティング手法を提案する。
この手順と、デバッグの労力を減らすために高品質なデバッグヒントを提供する方法について説明する。
これには、多数のテストのログからエンジニアリング機能のヒューリスティックスと、強力なデバッグヒントを生成するためのデータ分析技術が含まれている。
ケーススタディでは,これらの手法をパワーマネージメント(PM)設計の特徴であるPackage-C8の根源的故障に適用し,その有効性を示した。
さらに,本研究では,ルートキャスティング体験と再利用結果のマイニング,将来のデバッグ活動の促進,検証専門家への依存の軽減といった手法を提案する。
これらのテクニックは、複雑なハードウェア、ソフトウェア、ファームウェアシステム、プレシリコン、ポストシリコンといった様々なレベルでの検証活動にも有用であると考えています。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - Design Space Exploration of Approximate Computing Techniques with a
Reinforcement Learning Approach [49.42371633618761]
精度劣化と消費電力と計算時間短縮のバランスをとるアプリケーションの近似バージョンを見つけるためのRLベースの戦略を提案する。
実験結果から,いくつかのベンチマークにおいて,精度劣化と消費電力減少と計算時間との良好なトレードオフが示された。
論文 参考訳(メタデータ) (2023-12-29T09:10:40Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - Targeted collapse regularized autoencoder for anomaly detection: black hole at the center [3.924781781769534]
オートエンコーダは通常のクラスを超えて一般化することができ、いくつかの異常なサンプルに対して小さな再構成誤差を達成できる。
我々は、ニューラルネットワークコンポーネントの追加、計算の関与、煩雑なトレーニングの代わりに、再構成損失を計算的に軽い用語で補うという、驚くほど簡単な方法を提案する。
これは、オートエンコーダに基づく異常検出アルゴリズムのブラックボックスの性質を緩和し、さらなる利点、障害事例、潜在的な新しい方向の解明のための道筋を提供する。
論文 参考訳(メタデータ) (2023-06-22T01:33:47Z) - Learning to Adapt to Unseen Abnormal Activities under Weak Supervision [43.40900198498228]
ビデオ中の弱教師付き異常検出のためのメタラーニングフレームワークを提案する。
このフレームワークは,バイナリラベルの動画レベルのアノテーションが利用可能である場合にのみ,目に見えないような異常なアクティビティに効果的に対応できることを学習する。
論文 参考訳(メタデータ) (2022-03-25T12:15:44Z) - Feature Recommendation for Structural Equation Model Discovery in
Process Mining [0.0]
本稿では,問題に影響を及ぼす可能性のある(集約された)特徴の集合を見つける方法を提案する。
提案手法をProMのプラグインとして実装し、2つの実・合成イベントログを用いて評価した。
論文 参考訳(メタデータ) (2021-08-13T12:23:01Z) - Cockpit: A Practical Debugging Tool for Training Deep Neural Networks [27.96164890143314]
学習機械の内部動作をより深く観察することのできる機器のコレクションを提示する。
これらの機器は勾配分布と曲率に関する新しい高次情報を利用する。
論文 参考訳(メタデータ) (2021-02-12T16:28:49Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
本稿では,障害検出のための新しいディープラーニングベースのアプローチを導入し,実際のデータセット,すなわち部分放電検出タスクのためのKaggleプラットフォーム上でテストする。
提案手法では,時系列の特徴を抽出するためのアテンション機構を備えたLong-Short Term Memoryアーキテクチャを採用し,信号の周波数情報を利用した1D-Convolutional Neural Network構造を用いて予測を行う。
論文 参考訳(メタデータ) (2020-09-15T02:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。