論文の概要: Boundary-Guided Camouflaged Object Detection
- arxiv url: http://arxiv.org/abs/2207.00794v1
- Date: Sat, 2 Jul 2022 10:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 14:37:37.176149
- Title: Boundary-Guided Camouflaged Object Detection
- Title(参考訳): 境界誘導カモフラージュ物体検出
- Authors: Yujia Sun, Shuo Wang, Chenglizhao Chen, Tian-Zhu Xiang
- Abstract要約: カモフラージュ物体検出のための新しい境界誘導ネットワーク(BGNet)を提案する。
提案手法は,CODの表現学習をガイドするために,重要かつ余分なオブジェクト関連エッジセマンティクスを探索する。
提案手法は, 正確な境界位置同定を行うために, カモフラージュした物体の検出を促進する。
- 参考スコア(独自算出の注目度): 20.937071658007255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD), segmenting objects that are elegantly
blended into their surroundings, is a valuable yet challenging task. Existing
deep-learning methods often fall into the difficulty of accurately identifying
the camouflaged object with complete and fine object structure. To this end, in
this paper, we propose a novel boundary-guided network (BGNet) for camouflaged
object detection. Our method explores valuable and extra object-related edge
semantics to guide representation learning of COD, which forces the model to
generate features that highlight object structure, thereby promoting
camouflaged object detection of accurate boundary localization. Extensive
experiments on three challenging benchmark datasets demonstrate that our BGNet
significantly outperforms the existing 18 state-of-the-art methods under four
widely-used evaluation metrics. Our code is publicly available at:
https://github.com/thograce/BGNet.
- Abstract(参考訳): カモフラージュされた物体検出(COD: Camouflaged Object Detection)は、エレガントに周囲に混ざり合った物体を分別する手法であり、重要な課題である。
既存のディープラーニング手法は、カモフラージュされたオブジェクトを完全かつ微細なオブジェクト構造で正確に識別することの難しさに陥ることが多い。
そこで本稿では,カモフラージュ物体検出のための境界誘導ネットワーク(BGNet)を提案する。
提案手法では,CODの表現学習を誘導するために,オブジェクト構造を強調させる特徴をモデルに生成させ,精度の高い境界位置検出を行うために,重要かつ余分なオブジェクト関連エッジセマンティクスを探索する。
3つの挑戦的なベンチマークデータセットに対する大規模な実験により、我々のBGNetは、4つの広く使用されている評価指標の下で既存の18の最先端メソッドよりも大幅に優れています。
私たちのコードは、https://github.com/thograce/BGNet.comで公開されています。
関連論文リスト
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-08-27T12:53:25Z) - Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
本稿では,適応型誘導学習ネットワーク「textitAGLNet」を提案する。
広く使用されている3つのCODベンチマークデータセットの実験により,提案手法が大幅な性能向上を実現することが示された。
論文 参考訳(メタデータ) (2024-05-05T06:21:58Z) - Camouflaged Image Synthesis Is All You Need to Boost Camouflaged
Detection [65.8867003376637]
本研究では,カモフラージュデータの合成フレームワークを提案する。
提案手法では,既存の物体検出モデルのトレーニングに使用可能な,現実的なカモフラージュ画像の生成に生成モデルを用いる。
我々のフレームワークは3つのデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-08-13T06:55:05Z) - Referring Camouflaged Object Detection [97.90911862979355]
Ref-COD は、特定のカモフラージュされたオブジェクトを、サルエントターゲットオブジェクトによる参照画像の小さなセットに基づいて分割することを目的としている。
R2C7Kと呼ばれる大規模なデータセットは、実世界のシナリオで64のオブジェクトカテゴリをカバーする7Kイメージで構成されています。
論文 参考訳(メタデータ) (2023-06-13T04:15:37Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
バイナリセグメンテーション設定は、カモフラージュの概念を完全に理解できない。
そこで本研究では,カモフラージュされたオブジェクトの局所化,セグメント化,ランク付けを同時に行う3段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-23T14:26:18Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Scribble-based Boundary-aware Network for Weakly Supervised Salient
Object Detection in Remote Sensing Images [10.628932392896374]
スパース・スクリブル・アノテーションからリモートセンシング画像の正当性を予測するために,弱教師付きサルエント・オブジェクト検出フレームワークを提案する。
具体的には,高信頼度オブジェクト境界 (擬似) ラベルによって明示的に制御されるオブジェクト境界意味論を探索する境界対応モジュール (BAM) を設計する。
次に,境界セマンティクスを高次特徴と統合し,スクリブルラベルの監督下での健全な物体検出を誘導する。
論文 参考訳(メタデータ) (2022-02-07T20:32:21Z) - Fast Camouflaged Object Detection via Edge-based Reversible
Re-calibration Network [17.538512222905087]
本稿では,ERRNetと呼ばれるエッジベースの可逆再校正ネットワークを提案する。
Selective Edge Aggregation(SEA)とReversible Re-calibration Unit(RRU)の2つの革新的な設計が特徴である。
実験の結果,ERRNetは3つのCODデータセットと5つの医用画像セグメンテーションデータセットで既存の最先端ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-11-05T02:03:54Z) - MLCVNet: Multi-Level Context VoteNet for 3D Object Detection [51.45832752942529]
我々は,最先端のVoteNet上に構築された3次元オブジェクトを相関的に認識するためのマルチレベルコンテキストVoteNet(MLCVNet)を提案する。
異なるレベルのコンテキスト情報をエンコードするために,VoteNetの投票・分類段階に3つのコンテキストモジュールを導入する。
本手法は,3次元物体検出データセットの精度向上に有効な手法である。
論文 参考訳(メタデータ) (2020-04-12T19:10:24Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
オブジェクトレベルのアンカーを用いた既存のメソッドとは逆のアプローチを論じる。
構成モデルに着想を得て、内部の空でないボクセルの組成として、ホットスポットと呼ばれる物体を提案する。
提案手法は,OHSに基づく新しい地中真理割当て戦略を用いたアンカーフリー検出ヘッドを提案する。
論文 参考訳(メタデータ) (2019-12-30T03:02:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。