Lane-GNN: Integrating GNN for Predicting Drivers' Lane Change Intention
- URL: http://arxiv.org/abs/2207.00824v2
- Date: Tue, 5 Jul 2022 09:41:02 GMT
- Title: Lane-GNN: Integrating GNN for Predicting Drivers' Lane Change Intention
- Authors: Hongde Wu and Mingming Liu
- Abstract summary: We apply graph modelling on the traffic flow data generated by a popular mobility simulator, SUMO, at road segment levels.
We then evaluate the performance of lane changing detection using the proposed Lane-GNN scheme.
Our experimental results show that the proposed Lane-GNN can detect drivers' lane change intention within 90 seconds with an accuracy of 99.42%.
- Score: 5.23886447414886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, intelligent highway traffic network is playing an important role in
modern transportation infrastructures. A variable speed limit (VSL) system can
be facilitated in the highway traffic network to provide useful and dynamic
speed limit information for drivers to travel with enhanced safety. Such system
is usually designed with a steady advisory speed in mind so that traffic can
move smoothly when drivers follow the speed, rather than speeding up whenever
there is a gap and slowing down at congestion. However, little attention has
been given to the research of vehicles' behaviours when drivers left the road
network governed by a VSL system, which may largely involve unexpected
acceleration, deceleration and frequent lane changes, resulting in chaos for
the subsequent highway road users. In this paper, we focus on the detection of
traffic flow anomaly due to drivers' lane change intention on the highway
traffic networks after a VSL system. More specifically, we apply graph
modelling on the traffic flow data generated by a popular mobility simulator,
SUMO, at road segment levels. We then evaluate the performance of lane changing
detection using the proposed Lane-GNN scheme, an attention temporal graph
convolutional neural network, and compare its performance with a temporal
convolutional neural network (TCNN) as our baseline. Our experimental results
show that the proposed Lane-GNN can detect drivers' lane change intention
within 90 seconds with an accuracy of 99.42% under certain assumptions.
Finally, some interpretation methods are applied to the trained models with a
view to further illustrate our findings.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
We show how traffic propagates backward in case of congestion or accident scenarios and its overall impact on other segments of the roads.
We also train a sequential RNN-LSTM (Long Short-Term Memory) deep learning model on the real-time traffic data to assess the accuracy of simulation results based on a road-specific congestion.
arXiv Detail & Related papers (2023-04-01T01:23:10Z) - Traffic Volume Prediction using Memory-Based Recurrent Neural Networks:
A comparative analysis of LSTM and GRU [5.320087179174425]
We develop non-linear memory-based deep neural network models to forecast traffic volume in real-time.
Our experiments demonstrate the effectiveness of the proposed models in predicting traffic volume in highly dynamic and heterogeneous traffic environments.
arXiv Detail & Related papers (2023-03-22T15:25:07Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - A Lane-Changing Prediction Method Based on Temporal Convolution Network [36.84793673877468]
Lane-changing is an important driving behavior and unreasonable lane changes can result in potentially dangerous traffic collisions.
This study proposes a temporal convolutional network (TCN) to predict the long-term lane-changing trajectory and behavior.
arXiv Detail & Related papers (2020-11-01T07:33:10Z) - A Traffic Light Dynamic Control Algorithm with Deep Reinforcement
Learning Based on GNN Prediction [5.585321463602587]
GPlight is a deep reinforcement learning algorithm integrated with graph neural network (GNN)
In GPlight, the graph neural network (GNN) is first used to predict the future short-term traffic flow at the intersections.
arXiv Detail & Related papers (2020-09-29T01:09:24Z) - HOG, LBP and SVM based Traffic Density Estimation at Intersection [4.199844472131922]
High amount of vehicular traffic creates traffic congestion, unwanted delays, pollution, money loss, health issues, accidents, emergency vehicle passage and traffic violations.
Traditional traffic management and control systems fail to tackle this problem.
There's a necessity of an optimized and sensible control system which would enhance the efficiency of traffic flow.
arXiv Detail & Related papers (2020-05-04T18:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.