NARRATE: A Normal Assisted Free-View Portrait Stylizer
- URL: http://arxiv.org/abs/2207.00974v1
- Date: Sun, 3 Jul 2022 07:54:05 GMT
- Title: NARRATE: A Normal Assisted Free-View Portrait Stylizer
- Authors: Youjia Wang, Teng Xu, Yiwen Wu, Minzhang Li, Wenzheng Chen, Lan Xu,
Jingyi Yu
- Abstract summary: NARRATE is a novel pipeline that enables simultaneously editing portrait lighting and perspective in a photorealistic manner.
We experimentally demonstrate that NARRATE achieves more photorealistic, reliable results over prior works.
We showcase vivid free-view facial animations as well as 3D-aware relightableization, which help facilitate various AR/VR applications.
- Score: 42.38374601073052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose NARRATE, a novel pipeline that enables
simultaneously editing portrait lighting and perspective in a photorealistic
manner. As a hybrid neural-physical face model, NARRATE leverages complementary
benefits of geometry-aware generative approaches and normal-assisted physical
face models. In a nutshell, NARRATE first inverts the input portrait to a
coarse geometry and employs neural rendering to generate images resembling the
input, as well as producing convincing pose changes. However, inversion step
introduces mismatch, bringing low-quality images with less facial details. As
such, we further estimate portrait normal to enhance the coarse geometry,
creating a high-fidelity physical face model. In particular, we fuse the neural
and physical renderings to compensate for the imperfect inversion, resulting in
both realistic and view-consistent novel perspective images. In relighting
stage, previous works focus on single view portrait relighting but ignoring
consistency between different perspectives as well, leading unstable and
inconsistent lighting effects for view changes. We extend Total Relighting to
fix this problem by unifying its multi-view input normal maps with the physical
face model. NARRATE conducts relighting with consistent normal maps, imposing
cross-view constraints and exhibiting stable and coherent illumination effects.
We experimentally demonstrate that NARRATE achieves more photorealistic,
reliable results over prior works. We further bridge NARRATE with animation and
style transfer tools, supporting pose change, light change, facial animation,
and style transfer, either separately or in combination, all at a photographic
quality. We showcase vivid free-view facial animations as well as 3D-aware
relightable stylization, which help facilitate various AR/VR applications like
virtual cinematography, 3D video conferencing, and post-production.
Related papers
- GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - Lite2Relight: 3D-aware Single Image Portrait Relighting [87.62069509622226]
Lite2Relight is a novel technique that can predict 3D consistent head poses of portraits.
By utilizing a pre-trained geometry-aware encoder and a feature alignment module, we map input images into a relightable 3D space.
This includes producing 3D-consistent results of the full head, including hair, eyes, and expressions.
arXiv Detail & Related papers (2024-07-15T07:16:11Z) - DiffPortrait3D: Controllable Diffusion for Zero-Shot Portrait View Synthesis [18.64688172651478]
We present DiffPortrait3D, a conditional diffusion model capable of synthesizing 3D-consistent photo-realistic novel views.
Given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views.
We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.
arXiv Detail & Related papers (2023-12-20T13:31:11Z) - Relightable Neural Actor with Intrinsic Decomposition and Pose Control [80.06094206522668]
We propose Relightable Neural Actor, a new video-based method for learning a pose-driven neural human model that can be relighted.
For training, our method solely requires a multi-view recording of the human under a known, but static lighting condition.
To evaluate our approach in real-world scenarios, we collect a new dataset with four identities recorded under different light conditions, indoors and outdoors.
arXiv Detail & Related papers (2023-12-18T14:30:13Z) - Controllable Dynamic Appearance for Neural 3D Portraits [54.29179484318194]
We propose CoDyNeRF, a system that enables the creation of fully controllable 3D portraits in real-world capture conditions.
CoDyNeRF learns to approximate illumination dependent effects via a dynamic appearance model.
We demonstrate the effectiveness of our method on free view synthesis of a portrait scene with explicit head pose and expression controls.
arXiv Detail & Related papers (2023-09-20T02:24:40Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
We propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing.
Our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T17:58:40Z) - Explicitly Controllable 3D-Aware Portrait Generation [42.30481422714532]
We propose a 3D portrait generation network that produces consistent portraits according to semantic parameters regarding pose, identity, expression and lighting.
Our method outperforms prior arts in extensive experiments, producing realistic portraits with vivid expression in natural lighting when viewed in free viewpoint.
arXiv Detail & Related papers (2022-09-12T17:40:08Z) - Relightable 3D Head Portraits from a Smartphone Video [15.639140551193073]
We present a system for creating a relightable 3D portrait of a human head.
Our neural pipeline operates on a sequence of frames captured by a smartphone camera with the flash blinking.
A deep rendering network is trained to regress dense albedo, normals, and environmental lighting maps for arbitrary new viewpoints.
arXiv Detail & Related papers (2020-12-17T22:49:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.