論文の概要: DecisioNet -- A Binary-Tree Structured Neural Network
- arxiv url: http://arxiv.org/abs/2207.01127v1
- Date: Sun, 3 Jul 2022 21:47:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 13:32:05.573519
- Title: DecisioNet -- A Binary-Tree Structured Neural Network
- Title(参考訳): decisionet --バイナリツリー構造化ニューラルネットワーク
- Authors: Noam Gottlieb and Michael Werman
- Abstract要約: 本稿では,二分木構造ニューラルネットワークDecisioNet(DN)を提案する。
DNの変種は、元のネットワークの計算コストを大幅に削減しつつ、同様の精度を実現する。
- 参考スコア(独自算出の注目度): 0.12183405753834559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) and decision trees (DTs) are both
state-of-the-art classifiers. DNNs perform well due to their representational
learning capabilities, while DTs are computationally efficient as they perform
inference along one route (root-to-leaf) that is dependent on the input data.
In this paper, we present DecisioNet (DN), a binary-tree structured neural
network. We propose a systematic way to convert an existing DNN into a DN to
create a lightweight version of the original model. DecisioNet takes the best
of both worlds - it uses neural modules to perform representational learning
and utilizes its tree structure to perform only a portion of the computations.
We evaluate various DN architectures, along with their corresponding baseline
models on the FashionMNIST, CIFAR10, and CIFAR100 datasets. We show that the DN
variants achieve similar accuracy while significantly reducing the
computational cost of the original network.
- Abstract(参考訳): deep neural networks (dnn) と decision tree (dts) はどちらも最先端の分類器である。
DTは、入力データに依存する1つのルート(root-to-leaf)に沿って推論を行うので、計算効率が良い。
本稿では,二分木構成ニューラルネットワークであるdecisionet(dn)を提案する。
既存のdnnをdnに変換して軽量版のオリジナルモデルを作成する体系的な方法を提案する。
DecisioNetは、ニューラルネットワークを使って表現学習を行い、ツリー構造を利用して計算の一部だけを実行する。
我々は、FashionMNIST、CIFAR10、CIFAR100データセットのベースラインモデルとともに、様々なDNアーキテクチャを評価する。
DNの変種は、元のネットワークの計算コストを大幅に削減しつつ、同様の精度を実現する。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Deep neural network based adaptive learning for switched systems [0.3222802562733786]
スイッチングシステムに対するディープニューラルネットワークに基づく適応学習(DNN-AL)アプローチを提案する。
観測されたデータセットは、各サブセット内の構造的変化など、アダプティブにサブセットに分解される。
以前のイテレーションステップのネットワークパラメータは、後続のイテレーションステップでネットワークを初期化するために再利用される。
論文 参考訳(メタデータ) (2022-07-11T04:51:58Z) - Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
そこで本稿では, 適切な複雑性を伴って, 優れた深層ニューラルネットワークを探索する, スパースベイズニューラルネットワーク(BNN)を提案する。
我々は各ノードのマスキング変数を用いて、後続分布に応じていくつかのノードをオフにし、ノードワイズDNNを生成する。
いくつかのベンチマークデータセットを解析することにより,提案したBNNが既存手法と比較してよく動作することを示す。
論文 参考訳(メタデータ) (2022-06-02T02:59:55Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
ディープニューラルネットワーク(DNN)は、様々なコンピュータシステムにおいてますます重要な役割を担っている。
これらのネットワークを作成するために、エンジニアは通常、望ましいトポロジを指定し、自動トレーニングアルゴリズムを使用してネットワークの重みを選択する。
本稿では,近年のDNN検証の進歩を活用して,この問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-05-28T07:53:50Z) - Explore the Knowledge contained in Network Weights to Obtain Sparse
Neural Networks [2.649890751459017]
本稿では,ニューラルネットワーク(NN)における疎結合層の自動獲得のための新しい学習手法を提案する。
タスクニューラルネットワーク(TNN)の構造を最適化するためにスイッチングニューラルネットワーク(SNN)を設計する。
論文 参考訳(メタデータ) (2021-03-26T11:29:40Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
時間的ニューラルネットワーク(TNN)は、相対スパイク時間として符号化された情報を通信し、処理する。
TNNアーキテクチャを提案し、概念実証として、オンライン教師付き分類のより大きな文脈でTNNの動作を示す。
論文 参考訳(メタデータ) (2020-11-27T17:15:29Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。