Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis
- URL: http://arxiv.org/abs/2207.01345v1
- Date: Mon, 4 Jul 2022 12:07:17 GMT
- Title: Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis
- Authors: Hongyan Xu, Dadong Wang, Arcot Sowmya
- Abstract summary: We propose a deep spatial pyramid pooling (D-SPP) module to integrate contextual information over different resolutions.
We also propose a COVID-19 infection detection (CID) module to draw attention to the lesion area and remove interference from irrelevant information.
Our method produces higher accuracy of detecting COVID-19 lesions in CT and CXR images.
- Score: 13.31017458409054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus Disease 2019 (COVID-19) has spread globally and become a health
crisis faced by humanity since first reported. Radiology imaging technologies
such as computer tomography (CT) and chest X-ray imaging (CXR) are effective
tools for diagnosing COVID-19. However, in CT and CXR images, the infected area
occupies only a small part of the image. Some common deep learning methods that
integrate large-scale receptive fields may cause the loss of image detail,
resulting in the omission of the region of interest (ROI) in COVID-19 images
and are therefore not suitable for further processing. To this end, we propose
a deep spatial pyramid pooling (D-SPP) module to integrate contextual
information over different resolutions, aiming to extract information under
different scales of COVID-19 images effectively. Besides, we propose a COVID-19
infection detection (CID) module to draw attention to the lesion area and
remove interference from irrelevant information. Extensive experiments on four
CT and CXR datasets have shown that our method produces higher accuracy of
detecting COVID-19 lesions in CT and CXR images. It can be used as a
computer-aided diagnosis tool to help doctors effectively diagnose and screen
for COVID-19.
Related papers
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
We introduce COVIDx CT-3, a large-scale benchmark dataset for detection of COVID-19 cases from chest CT images.
COVIDx CT-3 includes 431,205 CT slices from 6,068 patients across at least 17 countries.
We examine the data diversity and potential biases of the COVIDx CT-3 dataset, finding significant geographic and class imbalances.
arXiv Detail & Related papers (2022-06-07T06:35:48Z) - HRCTCov19 -- A High-Resolution Chest CT Scan Image Dataset for COVID-19
Diagnosis and Differentiation [0.0]
During the COVID-19 pandemic, computed tomography (CT) was a popular method for diagnosing COVID-19 patients.
Publicly accessible COVID-19 CT image datasets are difficult to come by due to privacy concerns.
We have introduced HRCTCov19, a new COVID-19 high-resolution chest CT scan image dataset.
arXiv Detail & Related papers (2022-05-06T12:49:18Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - Screening COVID-19 Based on CT/CXR Images & Building a Publicly
Available CT-scan Dataset of COVID-19 [6.142272540492935]
This study builds a large-size publicly available CT-scan dataset, consisting of more than 13k CT-images of more than 1000 individuals, in which 8k images are taken from 500 patients infected with COVID-19.
We propose a deep learning model for screening COVID-19 using our proposed CT dataset and report the baseline results.
Finally, we extend the proposed CT model for screening COVID-19 from CXR images using a transfer learning approach.
arXiv Detail & Related papers (2020-12-28T11:52:33Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - COVID-19 CT Image Synthesis with a Conditional Generative Adversarial
Network [26.12568967493797]
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has spread rapidly since December 2019.
Real-time reverse transcription polymerase chain reaction (rRT-PCR) and chest computed tomography (CT) imaging both play an important role in COVID-19 diagnosis.
Deep-learning-based computer vision methods have demonstrated great promise for use in medical imaging applications.
arXiv Detail & Related papers (2020-07-29T07:20:06Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.