論文の概要: Hessian-Free Second-Order Adversarial Examples for Adversarial Learning
- arxiv url: http://arxiv.org/abs/2207.01396v1
- Date: Mon, 4 Jul 2022 13:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-05 13:55:37.664523
- Title: Hessian-Free Second-Order Adversarial Examples for Adversarial Learning
- Title(参考訳): hessian-free second-order adversarial examples for adversarial learning (英語)
- Authors: Yaguan Qian, Yuqi Wang, Bin Wang, Zhaoquan Gu, Yuhan Guo, Wassim
Swaileh
- Abstract要約: 厳密に設計された敵の例による敵の学習は、そのような攻撃に対して最も効果的な方法の1つである。
既存のほとんどの逆例生成法は1次勾配に基づいており、モデルのロバスト性を改善することはほとんどできない。
そこで我々は,この問題をKrylov部分空間の最適化に変換することで,計算複雑性を著しく低減し,学習手順を高速化する近似法を提案する。
- 参考スコア(独自算出の注目度): 6.835470949075655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies show deep neural networks (DNNs) are extremely vulnerable to
the elaborately designed adversarial examples. Adversarial learning with those
adversarial examples has been proved as one of the most effective methods to
defend against such an attack. At present, most existing adversarial examples
generation methods are based on first-order gradients, which can hardly further
improve models' robustness, especially when facing second-order adversarial
attacks. Compared with first-order gradients, second-order gradients provide a
more accurate approximation of the loss landscape with respect to natural
examples. Inspired by this, our work crafts second-order adversarial examples
and uses them to train DNNs. Nevertheless, second-order optimization involves
time-consuming calculation for Hessian-inverse. We propose an approximation
method through transforming the problem into an optimization in the Krylov
subspace, which remarkably reduce the computational complexity to speed up the
training procedure. Extensive experiments conducted on the MINIST and CIFAR-10
datasets show that our adversarial learning with second-order adversarial
examples outperforms other fisrt-order methods, which can improve the model
robustness against a wide range of attacks.
- Abstract(参考訳): 最近の研究では、ディープニューラルネットワーク(DNN)は、精巧に設計された敵の例に対して極めて脆弱であることが示されている。
これらの敵の例による敵対的学習は、そのような攻撃に対して最も効果的な方法の1つとして証明されている。
現在、ほとんどの既存逆数生成法は1次勾配に基づいており、特に2次逆数攻撃に直面する場合、モデルの堅牢性を改善することは困難である。
一階勾配と比較して、二階勾配は自然例に対する損失景観のより正確な近似を与える。
これに触発されて、我々の作業は二階の敵の例を作り、それらをDNNの訓練に使っている。
それにもかかわらず、二階最適化はヘッセン逆数の計算に時間を要する。
本稿では,問題をkrylov部分空間の最適化に変換し,計算量を大幅に削減して学習手順を高速化する近似手法を提案する。
MINIST と CIFAR-10 データセットで実施した大規模な実験により,2次逆数例による逆数学習は他のファサートオーダー法よりも優れており,広範囲な攻撃に対するモデルロバスト性の向上が期待できることがわかった。
関連論文リスト
- AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models [7.406040859734522]
制限のない敵攻撃は、深層学習モデルや敵防衛技術に深刻な脅威をもたらす。
以前の攻撃法は、しばしば生成モデルのサンプリングに投影された勾配(PGD)を直接注入する。
本稿では,拡散モデルを用いた非制限逆例を生成するAdvDiffと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T03:10:02Z) - Boosting Adversarial Transferability by Achieving Flat Local Maxima [23.91315978193527]
近年、様々な敵の攻撃が出現し、異なる視点から敵の移動可能性を高めている。
本研究では, 平坦な局所領域における逆例が良好な伝達性を持つ傾向があることを仮定し, 実証的に検証する。
目的関数の勾配更新を簡略化する近似最適化法を提案する。
論文 参考訳(メタデータ) (2023-06-08T14:21:02Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
深層ニューラルネットワークは、人間の知覚できない敵のノイズを自然の例に付加する敵の例を予測するときに、誤分類が起こる。
textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)を提案する。
LFRCは、潜在空間における逆例の関係を、自然例と整合性に制約する。
論文 参考訳(メタデータ) (2023-03-29T13:50:01Z) - The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for
Improving Adversarial Training [72.39526433794707]
敵の訓練とその変種は、敵の例に対抗して最も効果的なアプローチであることが示されている。
本稿では,モデルが類似した出力を生成することを奨励する,新たな対角訓練手法を提案する。
本手法は,最先端のロバスト性および自然な精度を実現する。
論文 参考訳(メタデータ) (2022-11-01T15:24:26Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Generalizing Adversarial Examples by AdaBelief Optimizer [6.243028964381449]
本稿では,AdaBelief反復高速勾配符号法を提案し,その逆例を一般化する。
提案手法は,最先端の攻撃手法と比較して,ホワイトボックス設定における敵例を効果的に生成することができる。
転送速度は、最新の攻撃方法よりも7%-21%高いです。
論文 参考訳(メタデータ) (2021-01-25T07:39:16Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。