論文の概要: Boosting Adversarial Transferability by Achieving Flat Local Maxima
- arxiv url: http://arxiv.org/abs/2306.05225v2
- Date: Thu, 2 Nov 2023 07:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 17:36:16.590782
- Title: Boosting Adversarial Transferability by Achieving Flat Local Maxima
- Title(参考訳): 平坦な局所最大値獲得による対向移動性の向上
- Authors: Zhijin Ge, Hongying Liu, Xiaosen Wang, Fanhua Shang, Yuanyuan Liu
- Abstract要約: 近年、様々な敵の攻撃が出現し、異なる視点から敵の移動可能性を高めている。
本研究では, 平坦な局所領域における逆例が良好な伝達性を持つ傾向があることを仮定し, 実証的に検証する。
目的関数の勾配更新を簡略化する近似最適化法を提案する。
- 参考スコア(独自算出の注目度): 23.91315978193527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer-based attack adopts the adversarial examples generated on the
surrogate model to attack various models, making it applicable in the physical
world and attracting increasing interest. Recently, various adversarial attacks
have emerged to boost adversarial transferability from different perspectives.
In this work, inspired by the observation that flat local minima are correlated
with good generalization, we assume and empirically validate that adversarial
examples at a flat local region tend to have good transferability by
introducing a penalized gradient norm to the original loss function. Since
directly optimizing the gradient regularization norm is computationally
expensive and intractable for generating adversarial examples, we propose an
approximation optimization method to simplify the gradient update of the
objective function. Specifically, we randomly sample an example and adopt a
first-order procedure to approximate the curvature of Hessian/vector product,
which makes computing more efficient by interpolating two neighboring
gradients. Meanwhile, in order to obtain a more stable gradient direction, we
randomly sample multiple examples and average the gradients of these examples
to reduce the variance due to random sampling during the iterative process.
Extensive experimental results on the ImageNet-compatible dataset show that the
proposed method can generate adversarial examples at flat local regions, and
significantly improve the adversarial transferability on either normally
trained models or adversarially trained models than the state-of-the-art
attacks. Our codes are available at:
https://github.com/Trustworthy-AI-Group/PGN.
- Abstract(参考訳): 転送ベースの攻撃は、サロゲートモデルで生成された敵の例を採用して、様々なモデルを攻撃し、物理的世界に適用し、興味を惹きつける。
近年,異なる視点から敵の移動性を高めるために,様々な敵の攻撃が出現している。
本研究は, 平坦な局所最小値がよい一般化と相関しているという観測に着想を得て, 平坦な局所領域の逆転例が元の損失関数にペナル化勾配ノルムを導入することにより, 良好な伝達性を持つことを示した。
勾配正規化ノルムの直接最適化は計算コストが高く,逆例生成には難解であるため,目的関数の勾配更新を簡略化する近似最適化手法を提案する。
具体的には、サンプルをランダムにサンプリングし、ヘッセン/ベクトル積の曲率を近似する一階の手順を採用することで、2つの隣接する勾配を補間することで計算をより効率的にする。
一方,より安定な勾配方向を得るため,複数のサンプルをランダムにサンプリングし,各サンプルの勾配を平均して,反復過程におけるランダムサンプリングによるばらつきを低減した。
imagenet互換データセットの広範囲な実験結果から,提案手法は平坦なローカル領域で逆行例を生成し,通常訓練されたモデルあるいは逆行訓練モデルにおいて,最先端攻撃よりも逆行性が著しく向上することが示された。
私たちのコードは、https://github.com/Trustworthy-AI-Group/PGN.comで利用可能です。
関連論文リスト
- GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - Enhancing Generalization of Universal Adversarial Perturbation through
Gradient Aggregation [40.18851174642427]
深部ニューラルネットワークは普遍的逆境摂動(UAP)に脆弱である
本稿では,一般化の観点から,UAP生成手法の真剣なジレンマについて検討する。
グラディエント・アグリゲーション(SGA)と呼ばれるシンプルで効果的な手法を提案する。
SGAは勾配の消失を緩和し、局所最適度の低下から同時に逃れる。
論文 参考訳(メタデータ) (2023-08-11T08:44:58Z) - Improving Adversarial Transferability via Intermediate-level
Perturbation Decay [79.07074710460012]
我々は,一段階の最適化で敵の例を再現する新しい中間レベル手法を開発した。
実験結果から, 種々の犠牲者モデルに対する攻撃において, 最先端技術よりも大きな差が認められた。
論文 参考訳(メタデータ) (2023-04-26T09:49:55Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Improving Adversarial Transferability with Scheduled Step Size and Dual
Example [33.00528131208799]
反復型高速勾配符号法により生じる逆例の転送性は,反復数の増加に伴って低下傾向を示すことを示す。
本稿では,スケジューリングステップサイズとデュアルサンプル(SD)を用いて,良性サンプル近傍の対角情報を完全に活用する新しい戦略を提案する。
提案手法は,既存の対向攻撃手法と容易に統合でき,対向移動性が向上する。
論文 参考訳(メタデータ) (2023-01-30T15:13:46Z) - Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning [24.10329164911317]
多重漸近正規分布攻撃(MultiANDA)という手法を提案する。
我々は勾配上昇(SGA)の正規性を利用して摂動の後方分布を近似する。
提案手法は、防御の有無にかかわらず、ディープラーニングモデルに対する10の最先端のブラックボックス攻撃より優れる。
論文 参考訳(メタデータ) (2022-09-24T08:57:10Z) - Hessian-Free Second-Order Adversarial Examples for Adversarial Learning [6.835470949075655]
厳密に設計された敵の例による敵の学習は、そのような攻撃に対して最も効果的な方法の1つである。
既存のほとんどの逆例生成法は1次勾配に基づいており、モデルのロバスト性を改善することはほとんどできない。
そこで我々は,この問題をKrylov部分空間の最適化に変換することで,計算複雑性を著しく低減し,学習手順を高速化する近似法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:29:27Z) - Improving Robustness of Adversarial Attacks Using an Affine-Invariant
Gradient Estimator [15.863109283735625]
敵対的な例は、知覚不能な摂動で応答を著しく変化させることで、ディープニューラルネットワーク(DNN)を欺くことができる。
既存の敵の例のほとんどは、結果の例にアフィン変換を適用すると、悪意のある機能を維持できない。
本稿では,アフィン変換の分布に対して頑健な逆数例を一貫して構築できるアフィン不変逆数攻撃を提案する。
論文 参考訳(メタデータ) (2021-09-13T09:43:17Z) - Transferable Sparse Adversarial Attack [62.134905824604104]
オーバーフィッティング問題を緩和するジェネレータアーキテクチャを導入し、転送可能なスパース対逆例を効率的に作成する。
提案手法は,他の最適化手法よりも700$times$高速な推論速度を実現する。
論文 参考訳(メタデータ) (2021-05-31T06:44:58Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
画像分類モデルに対する最近のゼロオーダーのハードラベル攻撃は、ファーストオーダーのグラデーションレベルの代替品に匹敵する性能を示している。
最近、グラデーションレベルの設定では、通常の敵対的な例がデータ多様体から離れ、オンマニホールドの例が実際には一般化エラーであることが示されている。
雑音の多い多様体距離オラクルに基づく情報理論論的議論を提案し、敵の勾配推定を通じて多様体情報を漏洩させる。
論文 参考訳(メタデータ) (2021-03-04T20:53:06Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。