From Principles to Practice: A Deep Dive into AI Ethics and Regulations
- URL: http://arxiv.org/abs/2412.04683v2
- Date: Thu, 06 Feb 2025 05:44:29 GMT
- Title: From Principles to Practice: A Deep Dive into AI Ethics and Regulations
- Authors: Nan Sun, Yuantian Miao, Hao Jiang, Ming Ding, Jun Zhang,
- Abstract summary: The article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union.
Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles.
- Score: 13.753819576072127
- License:
- Abstract: In the rapidly evolving domain of Artificial Intelligence (AI), the complex interaction between innovation and regulation has become an emerging focus of our society. Despite tremendous advancements in AI's capabilities to excel in specific tasks and contribute to diverse sectors, establishing a high degree of trust in AI-generated outputs and decisions necessitates meticulous caution and continuous oversight. A broad spectrum of stakeholders, including governmental bodies, private sector corporations, academic institutions, and individuals, have launched significant initiatives. These efforts include developing ethical guidelines for AI and engaging in vibrant discussions on AI ethics, both among AI practitioners and within the broader society. This article thoroughly analyzes the ground-breaking AI regulatory framework proposed by the European Union. It delves into the fundamental ethical principles of safety, transparency, non-discrimination, traceability, and environmental sustainability for AI developments and deployments. Considering the technical efforts and strategies undertaken by academics and industry to uphold these principles, we explore the synergies and conflicts among the five ethical principles. Through this lens, work presents a forward-looking perspective on the future of AI regulations, advocating for a harmonized approach that safeguards societal values while encouraging technological advancement.
Related papers
- Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Towards an Ethical and Inclusive Implementation of Artificial Intelligence in Organizations: A Multidimensional Framework [0.0]
This article analyzes the impact of artificial intelligence on contemporary society and the importance of adopting an ethical approach to its development and implementation within organizations.
Various actors, such as governments, academics, and civil society, can play a role in shaping the development of AI aligned with human and social values.
arXiv Detail & Related papers (2024-05-02T19:43:51Z) - Hacia una implementación ética e inclusiva de la Inteligencia Artificial en las organizaciones: un marco multidimensional [0.0]
The article analyzes the impact of artificial intelligence on contemporary society and the importance of adopting an ethical approach to its development and implementation within organizations.
Various actors, such as governments, academics and civil society, can play a role in shaping the development of AI aligned with human and social values.
arXiv Detail & Related papers (2024-04-30T22:11:05Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Survey on AI Ethics: A Socio-technical Perspective [0.9374652839580183]
Ethical concerns associated with AI are multifaceted, including challenging issues of fairness, privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and environmental impact.
This work unifies the current and future ethical concerns of deploying AI into society.
arXiv Detail & Related papers (2023-11-28T21:00:56Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
The paper highlights the impact AI has in every sector of the US economy and the resultant effect on entities spanning businesses, government, academia, and civil society.
Our discussion explores eleven fundamental 'ethical principles' structured as overarching themes.
These encompass Transparency, Justice, Fairness, Equity, Non- Maleficence, Responsibility, Accountability, Privacy, Beneficence, Freedom, Autonomy, Trust, Dignity, Sustainability, and Solidarity.
arXiv Detail & Related papers (2023-10-09T14:29:00Z) - AI Ethics: An Empirical Study on the Views of Practitioners and
Lawmakers [8.82540441326446]
Transparency, accountability, and privacy are the most critical AI ethics principles.
Lack of ethical knowledge, no legal frameworks, and lacking monitoring bodies are the most common AI ethics challenges.
arXiv Detail & Related papers (2022-06-30T17:24:29Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
It is priority to create the rules and specialized organizations that can oversight the following of such rules.
This work proposes the creation, at the universities, of Ethical Committees or Commissions specialized on Artificial Intelligence.
arXiv Detail & Related papers (2020-02-11T23:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.