論文の概要: Fidelity of Ensemble Aggregation for Saliency Map Explanations using
Bayesian Optimization Techniques
- arxiv url: http://arxiv.org/abs/2207.01565v2
- Date: Tue, 5 Jul 2022 06:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-06 11:55:54.606006
- Title: Fidelity of Ensemble Aggregation for Saliency Map Explanations using
Bayesian Optimization Techniques
- Title(参考訳): ベイズ最適化手法を用いたサリエンシマップ記述のためのアンサンブル集合の忠実性
- Authors: Yannik Mahlau, Christian Nolde
- Abstract要約: 我々は,異なる画素ベースのアグリゲーションスキームを新しい説明を生成するために提示し,比較する。
個々の説明の差異を集約プロセスに組み込む。
また,複数の正規化手法がアンサンブルアグリゲーションに与える影響を解析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, an abundance of feature attribution methods for explaining
neural networks have been developed. Especially in the field of computer
vision, many methods for generating saliency maps providing pixel attributions
exist. However, their explanations often contradict each other and it is not
clear which explanation to trust. A natural solution to this problem is the
aggregation of multiple explanations. We present and compare different
pixel-based aggregation schemes with the goal of generating a new explanation,
whose fidelity to the model's decision is higher than each individual
explanation. Using methods from the field of Bayesian Optimization, we
incorporate the variance between the individual explanations into the
aggregation process. Additionally, we analyze the effect of multiple
normalization techniques on ensemble aggregation.
- Abstract(参考訳): 近年,ニューラルネットワークを説明するための特徴帰属法が数多く開発されている。
特にコンピュータビジョンの分野では、画素属性を提供するサリエンシマップを生成する多くの方法が存在する。
しかし、それらの説明はしばしば矛盾しており、どの説明を信用するかは明らかではない。
この問題の自然な解決策は、複数の説明の集約である。
異なるピクセルベース集約スキームと,モデル決定に対する忠実度が各説明よりも高い新たな説明の生成を目標とし,比較を行った。
ベイズ最適化の分野からの手法を用いて、個々の説明間の分散を集約プロセスに組み込む。
さらに,複数の正規化手法がアンサンブルアグリゲーションに与える影響を分析する。
関連論文リスト
- Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification [5.087579454836169]
State-of-the-art explainability Method は、特定のクラスが特定された場所を示すために、サリエンシマップを生成する。
本稿では,畳み込みニューラルネットワークの機能抽出プロセス全体を説明するポストホック手法を提案する。
また,複数の画像にラベルを集約することで,グローバルな説明を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T09:21:35Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Local Universal Explainer (LUX) -- a rule-based explainer with factual, counterfactual and visual explanations [7.673339435080445]
Local Universal Explainer (LUX) は、現実的、対実的、視覚的な説明を生成できるルールベースの説明器である。
これは、決定木アルゴリズムの修正版に基づいており、斜め分割とSHAPのような重要なXAIメソッドとの統合を可能にする。
提案手法を実データと合成データセットで検証し, LORE, EXPLAN, Anchorなどの最先端のルールベースの説明器と比較した。
論文 参考訳(メタデータ) (2023-10-23T13:04:15Z) - Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces [14.70409833767752]
説明可能なAIは、ニューラルネットワークのような複雑なMLモデルのブラックボックスの性質を克服し、予測の説明を生成することを目的としている。
そこで本研究では,PCA や ICA に見られる原理を説明に拡張する2つの新しい分析法を提案する。
これらの新しい分析は、主成分分析 (PRCA) と解離関連部分空間分析 (DRSA) と呼ばれ、ばらつきや硬変の代わりに関連性を最大化する。
論文 参考訳(メタデータ) (2022-12-30T18:04:25Z) - Comparing the Decision-Making Mechanisms by Transformers and CNNs via Explanation Methods [4.661764541283174]
本研究では、データセット全体に基づく深い説明アルゴリズムを適用して、異なる視覚認識バックボーンの意思決定について検討する。
TransformersとConvNeXtは、画像の複数の部分を共同で検討することで、より構成的であることが分かりました。
特徴利用の類似性に基づいて、異なるモデルのランドスケープをプロットする。
論文 参考訳(メタデータ) (2022-12-13T19:38:13Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Multi-Objective Counterfactual Explanations [0.7349727826230864]
本稿では, 対物探索を多目的最適化問題に変換する多目的対物法 (MOC) を提案する。
我々のアプローチは、提案する目的間のトレードオフの異なる多様な対策セットを返却するだけでなく、特徴空間における多様性も維持する。
論文 参考訳(メタデータ) (2020-04-23T13:56:39Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。