論文の概要: Multivariate Data Explanation by Jumping Emerging Patterns Visualization
- arxiv url: http://arxiv.org/abs/2106.11112v1
- Date: Mon, 21 Jun 2021 13:49:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:21:18.767287
- Title: Multivariate Data Explanation by Jumping Emerging Patterns Visualization
- Title(参考訳): 跳躍パターン可視化による多変量データ記述
- Authors: M\'ario Popolin Neto and Fernando V. Paulovich
- Abstract要約: 多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
- 参考スコア(独自算出の注目度): 78.6363825307044
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Visual Analytics (VA) tools and techniques have shown to be instrumental in
supporting users to build better classification models, interpret model
decisions and audit results. In a different direction, VA has recently been
applied to transform classification models into descriptive mechanisms instead
of predictive. The idea is to use such models as surrogates for data patterns,
visualizing the model to understand the phenomenon represented by the data.
Although very useful and inspiring, the few proposed approaches have opted to
use low complex classification models to promote straightforward
interpretation, presenting limitations to capture intricate data patterns. In
this paper, we present VAX (multiVariate dAta eXplanation), a new VA method to
support the identification and visual interpretation of patterns in
multivariate data sets. Unlike the existing similar approaches, VAX uses the
concept of Jumping Emerging Patterns to identify and aggregate several
diversified patterns, producing explanations through logic combinations of data
variables. The potential of VAX to interpret complex multivariate datasets is
demonstrated through study-cases using two real-world data sets covering
different scenarios.
- Abstract(参考訳): visual analytics (va)のツールやテクニックは、より優れた分類モデルの構築、モデル決定の解釈、監査結果の支援に役立つことが示されている。
異なる方向において、VAは予測ではなく、分類モデルを記述的なメカニズムに変換するために最近応用されている。
データパターンの代理としてそのようなモデルを使用し、データによって表される現象を理解するためにモデルを視覚化する。
非常に有用で刺激的なアプローチがいくつか提案されているが、単純な解釈を促進するために低複雑な分類モデルを使用することを選択し、複雑なデータパターンを捉えるための制限を提示している。
本稿では,多変量データセットにおけるパターンの識別と視覚的解釈を支援する新しいVA法であるVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
複雑な多変量データセットを解釈するvaxのポテンシャルは、異なるシナリオをカバーする2つの実世界のデータセットを用いた研究によって実証される。
関連論文リスト
- iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification [2.0094862015890245]
視覚分析(VA)を用いて,大規模言語モデルを用いた合成データの生成を誘導する手法を提案する。
本稿では,データ不足の種別について論じ,その識別を支援するVA技術について述べるとともに,対象データ合成の有効性を実証する。
論文 参考訳(メタデータ) (2024-09-24T08:19:45Z) - Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
汎用データのためのエンドツーエンドのディープラーニングベースのMVCフレームワークを提案する。
我々のアプローチは、新しい置換に基づく正準相関目標を用いて有意義な融合データ表現を学習することである。
10つのMVCベンチマークデータセットを用いて、モデルの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-26T08:08:30Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Learning to Select Prototypical Parts for Interpretable Sequential Data
Modeling [7.376829794171344]
本稿では,原型概念の線形結合を用いた自己説明選択モデル(SESM)を提案する。
より良い解釈可能性を得るために,多様性,安定性,局所性など,複数の制約をトレーニング対象として設計する。
論文 参考訳(メタデータ) (2022-12-07T01:42:47Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Variational Interpretable Learning from Multi-view Data [2.687817337319978]
DICCAは、多視点データの共有とビュー固有のバリエーションの両方を分離するように設計されている。
実世界のデータセットにおける実証的な結果は、我々の手法がドメイン間で競合していることを示している。
論文 参考訳(メタデータ) (2022-02-28T01:56:44Z) - IMACS: Image Model Attribution Comparison Summaries [16.80986701058596]
我々は,勾配に基づくモデル属性とアグリゲーションと可視化技術を組み合わせたIMACSを提案する。
IMACSは評価データセットから適切な入力特徴を抽出し、類似性に基づいてクラスタ化し、類似した入力特徴に対するモデル属性の違いを可視化する。
本稿では,衛星画像上で訓練した2つのモデル間の領域シフトによる行動差を明らかにする方法を示す。
論文 参考訳(メタデータ) (2022-01-26T21:35:14Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
本研究では,ランダムフォレスト (RF) 解釈のための新しい可視化手法である Explainable Matrix (ExMatrix) を提案する。
単純なマトリックスのようなメタファで、行はルール、列は特徴、セルはルールを述語する。
ExMatrixの適用性は、異なる例を通じて確認され、RFモデルの解釈可能性を促進するために実際にどのように使用できるかを示している。
論文 参考訳(メタデータ) (2020-05-08T21:03:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。