論文の概要: What Do Graph Convolutional Neural Networks Learn?
- arxiv url: http://arxiv.org/abs/2207.01839v1
- Date: Tue, 5 Jul 2022 06:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-07 01:26:36.005939
- Title: What Do Graph Convolutional Neural Networks Learn?
- Title(参考訳): グラフ畳み込みニューラルネットワークは何を学ぶか?
- Authors: Sannat Singh Bhasin, Vaibhav Holani, Divij Sanjanwala
- Abstract要約: グラフ畳み込みニューラルネットワーク(GCN)はグラフニューラルネットワーク(GNN)の共通変種である
近年の文献では、GCNは特定の「特殊条件」下でヘテロ親和性グラフ上での強い性能を達成可能であることが強調されている。
データセットの基盤となるグラフ構造について検討した結果,GCNのSSNC性能は,クラス内のノードの近傍構造における一貫性と特異性に大きく影響していることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have gained traction over the past few years for
their superior performance in numerous machine learning tasks. Graph
Convolutional Neural Networks (GCN) are a common variant of GNNs that are known
to have high performance in semi-supervised node classification (SSNC), and
work well under the assumption of homophily. Recent literature has highlighted
that GCNs can achieve strong performance on heterophilous graphs under certain
"special conditions". These arguments motivate us to understand why, and how,
GCNs learn to perform SSNC. We find a positive correlation between similarity
of latent node embeddings of nodes within a class and the performance of a GCN.
Our investigation on underlying graph structures of a dataset finds that a
GCN's SSNC performance is significantly influenced by the consistency and
uniqueness in neighborhood structure of nodes within a class.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、多くの機械学習タスクにおける優れたパフォーマンスのために、ここ数年で注目を集めている。
グラフ畳み込みニューラルネットワーク(GCN)は、半教師付きノード分類(SSNC)において高性能であることが知られ、ホモフィリーの仮定の下でうまく機能することが知られているGNNの一般的な変種である。
近年の文献では、GCNは特定の「特殊条件」下でヘテロ親和性グラフ上で強い性能を発揮することが強調されている。
これらの議論は、GCNがSSNCを実行することを学ぶ理由と方法を理解する動機となります。
クラス内のノードの潜伏ノード埋め込みの類似性とGCNの性能との間には正の相関関係が認められた。
データセットの基盤となるグラフ構造について検討した結果,GCNのSSNC性能は,クラス内のノードの近傍構造における一貫性と特異性に大きく影響していることがわかった。
関連論文リスト
- Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
本稿では,ネットワーク埋め込みに適したGNNアーキテクチャであるCulaborative graph Neural Networks-CONNを提案する。
論文 参考訳(メタデータ) (2023-07-22T04:52:27Z) - 2-hop Neighbor Class Similarity (2NCS): A graph structural metric
indicative of graph neural network performance [4.051099980410583]
グラフニューラルネットワーク(GNN)は、多数のドメインにわたるグラフ構造化データに対して最先端のパフォーマンスを実現する。
異なるタイプのノードが接続されるヘテロ親和性グラフでは、GNNは一貫して機能しない。
2-hop Neighbor Class similarity (2NCS) は、GNNのパフォーマンスと、他の指標よりも強く、一貫して相関する新しい定量的グラフ構造特性である。
論文 参考訳(メタデータ) (2022-12-26T16:16:51Z) - Neighborhood Convolutional Network: A New Paradigm of Graph Neural
Networks for Node Classification [12.062421384484812]
グラフ畳み込みネットワーク(GCN)は、各畳み込み層における近傍の集約と特徴変換を分離する。
本稿では,周辺畳み込みネットワーク(NCN)と呼ばれるGCNの新しいパラダイムを提案する。
このようにして、モデルは、近隣情報を集約するための分離GCNの利点を継承すると同時に、より強力な特徴学習モジュールを開発することができる。
論文 参考訳(メタデータ) (2022-11-15T02:02:51Z) - New Insights into Graph Convolutional Networks using Neural Tangent
Kernels [8.824340350342512]
本稿では,グラフに関する半教師付き学習に着目し,その観察をNutral Tangent Kernels (NTK) のレンズを通して説明する。
我々は、無限に広いGCNに対応するNTK(スキップ接続なしで)を導出する。
得られたNTKを用いて、適切な正規化を行うと、ネットワーク深さがGCNの性能を劇的に低下させるとは限らないことを識別する。
論文 参考訳(メタデータ) (2021-10-08T15:36:52Z) - Node Feature Kernels Increase Graph Convolutional Network Robustness [19.076912727990326]
グラフ畳み込みネットワーク(GCN)の入力の摂動に対する堅牢性は、ますます重要になっているトピックになりつつある。
本稿では,ランダム行列理論解析が可能である。
グラフ構造の隣接行列にノード特徴カーネルを追加することで、GCNにおけるメッセージパッシングステップの強化がこの問題を解決することが観察された。
論文 参考訳(メタデータ) (2021-09-04T04:20:45Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z) - Investigating and Mitigating Degree-Related Biases in Graph
Convolutional Networks [62.8504260693664]
グラフ畳み込みネットワーク(GCN)は、グラフ上の半教師付き学習タスクに対して有望な結果を示す。
本稿では,ノード次数分布に関するGCNを解析する。
本稿では,GCNの次数バイアスを緩和する自己監督型DegreeSpecific GCN(SL-DSGC)を開発した。
論文 参考訳(メタデータ) (2020-06-28T16:26:47Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。