論文の概要: Collaborative Graph Neural Networks for Attributed Network Embedding
- arxiv url: http://arxiv.org/abs/2307.11981v1
- Date: Sat, 22 Jul 2023 04:52:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 18:39:00.872101
- Title: Collaborative Graph Neural Networks for Attributed Network Embedding
- Title(参考訳): 属性付きネットワーク埋め込みのためのコラボレーティブグラフニューラルネットワーク
- Authors: Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, and Xia Hu
- Abstract要約: グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
本稿では,ネットワーク埋め込みに適したGNNアーキテクチャであるCulaborative graph Neural Networks-CONNを提案する。
- 参考スコア(独自算出の注目度): 63.39495932900291
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have shown prominent performance on attributed
network embedding. However, existing efforts mainly focus on exploiting network
structures, while the exploitation of node attributes is rather limited as they
only serve as node features at the initial layer. This simple strategy impedes
the potential of node attributes in augmenting node connections, leading to
limited receptive field for inactive nodes with few or even no neighbors.
Furthermore, the training objectives (i.e., reconstructing network structures)
of most GNNs also do not include node attributes, although studies have shown
that reconstructing node attributes is beneficial. Thus, it is encouraging to
deeply involve node attributes in the key components of GNNs, including graph
convolution operations and training objectives. However, this is a nontrivial
task since an appropriate way of integration is required to maintain the merits
of GNNs. To bridge the gap, in this paper, we propose COllaborative graph
Neural Networks--CONN, a tailored GNN architecture for attribute network
embedding. It improves model capacity by 1) selectively diffusing messages from
neighboring nodes and involved attribute categories, and 2) jointly
reconstructing node-to-node and node-to-attribute-category interactions via
cross-correlation. Experiments on real-world networks demonstrate that CONN
excels state-of-the-art embedding algorithms with a great margin.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、属性付きネットワーク埋め込みにおいて顕著な性能を示している。
しかし、既存の取り組みは主にネットワーク構造の利用に焦点を当てているが、ノード属性の活用は初期層でのみノード機能として機能するため、かなり制限されている。
この単純な戦略は、ノード接続を増強するノード属性の可能性を阻害し、近傍がほとんど、あるいは全くない非アクティブノードの受容野を制限している。
さらに、ほとんどのGNNのトレーニング目標(すなわちネットワーク構造再構築)にもノード属性は含まれていないが、ノード属性の再構築が有用であることが研究で示されている。
したがって、グラフ畳み込み操作やトレーニング目的を含むGNNの重要なコンポーネントに、ノード属性を深く関与させることが推奨されている。
しかし、GNNのメリットを維持するためには適切な統合方法が必要であるため、これは簡単な作業である。
このギャップを埋めるために,我々は属性ネットワークの埋め込みに適したGNNアーキテクチャであるコラボレーティブグラフニューラルネットワーク-CONNを提案する。
モデルのキャパシティを向上させ
1)隣接するノードや関連属性カテゴリからのメッセージを選択的に拡散し、
2)相互相関によるノード-ノード間およびノード-属性間相互作用の協調再構築
実世界のネットワークでの実験では、CONNは最先端の埋め込みアルゴリズムを非常に優れていることを示した。
関連論文リスト
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph
Embeddings Augmentation [11.841882902141696]
Ego-centric Spectral subGraph Embedding Augmentation (ESGEA) と呼ばれる新しいアプローチを提案する。
ESGEAは、特に情報が不足しているシナリオにおいて、ノード機能の強化と設計を目的としている。
ノード属性が利用できないソーシャルネットワークグラフ分類タスクにおいて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-10T14:57:29Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Edgeless-GNN: Unsupervised Inductive Edgeless Network Embedding [7.391641422048645]
ネットワークを新たに入力したユーザなど,エッジレスノードを埋め込む問題について検討する。
我々は,非教師付き帰納学習により,エッジレスノードに対してもノード埋め込みを生成可能な新しいフレームワークであるEdgeless-GNNを提案する。
論文 参考訳(メタデータ) (2021-04-12T06:37:31Z) - DINE: A Framework for Deep Incomplete Network Embedding [33.97952453310253]
本稿では,ディープ不完全ネットワーク埋め込み,すなわちDINEを提案する。
まず、期待最大化フレームワークを用いて、部分的に観測可能なネットワーク内のノードとエッジの両方を含む欠落部分を完成させる。
マルチラベル分類およびリンク予測タスクにおいて,DINEを3つのネットワーク上で評価する。
論文 参考訳(メタデータ) (2020-08-09T04:59:35Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。