Bayesian approaches for Quantifying Clinicians' Variability in Medical
Image Quantification
- URL: http://arxiv.org/abs/2207.01868v2
- Date: Wed, 6 Jul 2022 06:14:40 GMT
- Title: Bayesian approaches for Quantifying Clinicians' Variability in Medical
Image Quantification
- Authors: Jaeik Jeon, Yeonggul Jang, Youngtaek Hong, Hackjoon Shim, Sekeun Kim
- Abstract summary: We show that Bayesian predictive distribution parameterized by deep neural networks could approximate the clinicians' inter-intra variability.
We show a new perspective in analyzing medical images quantitatively by providing clinical measurement uncertainty.
- Score: 0.16314780449435543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging, including MRI, CT, and Ultrasound, plays a vital role in
clinical decisions. Accurate segmentation is essential to measure the structure
of interest from the image. However, manual segmentation is highly
operator-dependent, which leads to high inter and intra-variability of
quantitative measurements. In this paper, we explore the feasibility that
Bayesian predictive distribution parameterized by deep neural networks can
capture the clinicians' inter-intra variability. By exploring and analyzing
recently emerged approximate inference schemes, we evaluate whether approximate
Bayesian deep learning with the posterior over segmentations can learn
inter-intra rater variability both in segmentation and clinical measurements.
The experiments are performed with two different imaging modalities: MRI and
ultrasound. We empirically demonstrated that Bayesian predictive distribution
parameterized by deep neural networks could approximate the clinicians'
inter-intra variability. We show a new perspective in analyzing medical images
quantitatively by providing clinical measurement uncertainty.
Related papers
- MedUHIP: Towards Human-In-the-Loop Medical Segmentation [5.520419627866446]
Medical image segmentation is particularly complicated by inherent uncertainties.
We propose a novel approach that integrates an textbfuncertainty-aware model with textbfhuman-in-the-loop interaction
Our method showcases superior segmentation capabilities, outperforming a wide range of deterministic and uncertainty-aware models.
arXiv Detail & Related papers (2024-08-03T01:06:02Z) - QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge [93.61262892578067]
Uncertainty in medical image segmentation tasks, especially inter-rater variability, presents a significant challenge.
This variability directly impacts the development and evaluation of automated segmentation algorithms.
We report the set-up and summarize the benchmark results of the Quantification of Uncertainties in Biomedical Image Quantification Challenge (QUBIQ)
arXiv Detail & Related papers (2024-03-19T17:57:24Z) - A hybrid approach for improving U-Net variants in medical image
segmentation [0.0]
The technique of splitting a medical image into various segments or regions of interest is known as medical image segmentation.
The segmented images that are produced can be used for many different things, including diagnosis, surgery planning, and therapy evaluation.
This research aims to reduce the network parameter requirements using depthwise separable convolutions.
arXiv Detail & Related papers (2023-07-31T07:43:45Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
We propose a novel multi-modal evaluation (MME) approach to measure the effectiveness of different segmentation methods.
We introduce new relevant and interpretable characteristics, including detection property, boundary alignment, uniformity, total volume, and relative volume.
Our proposed approach is open-source and publicly available for use.
arXiv Detail & Related papers (2023-02-08T15:31:33Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Variational Inference for Quantifying Inter-observer Variability in
Segmentation of Anatomical Structures [12.138198227748353]
Most segmentation methods simply model a mapping from an image to its single segmentation map and do not take the disagreement of annotators into consideration.
We propose a novel variational inference framework to model the distribution of plausible segmentation maps, given a specific MR image.
arXiv Detail & Related papers (2022-01-18T16:33:33Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
This study's objective was to segment spinal metastases in diagnostic MR images using a deep learning-based approach.
We used a U-Net like architecture trained with 40 clinical cases including both, lytic and sclerotic lesion types and various MR sequences.
Compared to expertly annotated lesion segmentations, the experiments yielded promising results with average Dice scores up to 77.6% and mean sensitivity rates up to 78.9%.
arXiv Detail & Related papers (2020-01-08T10:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.