An Intrusion Detection System based on Deep Belief Networks
- URL: http://arxiv.org/abs/2207.02117v1
- Date: Tue, 5 Jul 2022 15:38:24 GMT
- Title: An Intrusion Detection System based on Deep Belief Networks
- Authors: Othmane Belarbi, Aftab Khan, Pietro Carnelli and Theodoros
Spyridopoulos
- Abstract summary: We develop and evaluate the performance of DBN on detecting cyber-attacks within a network of connected devices.
Our proposed DBN approach shows competitive and promising results, with significant improvement on the detection of attacks underrepresented in the training dataset.
- Score: 1.535077825808595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of connected devices has led to the proliferation of novel
cyber-security threats known as zero-day attacks. Traditional behaviour-based
IDS rely on DNN to detect these attacks. The quality of the dataset used to
train the DNN plays a critical role in the detection performance, with
underrepresented samples causing poor performances. In this paper, we develop
and evaluate the performance of DBN on detecting cyber-attacks within a network
of connected devices. The CICIDS2017 dataset was used to train and evaluate the
performance of our proposed DBN approach. Several class balancing techniques
were applied and evaluated. Lastly, we compare our approach against a
conventional MLP model and the existing state-of-the-art. Our proposed DBN
approach shows competitive and promising results, with significant performance
improvement on the detection of attacks underrepresented in the training
dataset.
Related papers
- Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things (IoT) and Industrial Internet of Things (IIoT) have led to an increasing range of cyber threats.
For more than a decade, researchers have delved into supervised machine learning techniques to develop Intrusion Detection System (IDS)
IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks.
We propose two strategies for semi-supervised learning based IDS where training samples of attacks are not required.
arXiv Detail & Related papers (2024-03-17T11:49:57Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
We introduce an enhanced approach for DDoS attack detection by leveraging the capabilities of Deep Residual Neural Networks (ResNets)
We balance the representation of benign and malicious data points, enabling the model to better discern intricate patterns indicative of an attack.
Experimental results on a real-world dataset demonstrate that our approach achieves an accuracy of 99.98%, significantly outperforming traditional methods.
arXiv Detail & Related papers (2024-01-06T03:03:52Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2023-10-10T09:39:38Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - Practical No-box Adversarial Attacks with Training-free Hybrid Image
Transformation [123.33816363589506]
We show the existence of a textbftraining-free adversarial perturbation under the no-box threat model.
Motivated by our observation that high-frequency component (HFC) domains in low-level features, we attack an image mainly by manipulating its frequency components.
Our method is even competitive to mainstream transfer-based black-box attacks.
arXiv Detail & Related papers (2022-03-09T09:51:00Z) - Towards Adversarial-Resilient Deep Neural Networks for False Data
Injection Attack Detection in Power Grids [7.351477761427584]
False data injection attacks (FDIAs) pose a significant security threat to power system state estimation.
Recent studies have proposed machine learning (ML) techniques, particularly deep neural networks (DNNs)
arXiv Detail & Related papers (2021-02-17T22:26:34Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.