Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets
- URL: http://arxiv.org/abs/2207.02238v1
- Date: Tue, 5 Jul 2022 18:01:20 GMT
- Title: Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets
- Authors: Charles Lu, Anastasios N. Angelopoulos, Stuart Pomerantz
- Abstract summary: A lack of statistically rigorous uncertainty quantification is a significant factor undermining trust in AI results.
Recent developments in distribution-free uncertainty quantification present practical solutions for these issues.
We demonstrate a technique for forming ordinal prediction sets that are guaranteed to contain the correct stenosis severity.
- Score: 0.7734726150561088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The regulatory approval and broad clinical deployment of medical AI have been
hampered by the perception that deep learning models fail in unpredictable and
possibly catastrophic ways. A lack of statistically rigorous uncertainty
quantification is a significant factor undermining trust in AI results. Recent
developments in distribution-free uncertainty quantification present practical
solutions for these issues by providing reliability guarantees for black-box
models on arbitrary data distributions as formally valid finite-sample
prediction intervals. Our work applies these new uncertainty quantification
methods -- specifically conformal prediction -- to a deep-learning model for
grading the severity of spinal stenosis in lumbar spine MRI. We demonstrate a
technique for forming ordinal prediction sets that are guaranteed to contain
the correct stenosis severity within a user-defined probability (confidence
interval). On a dataset of 409 MRI exams processed by the deep-learning model,
the conformal method provides tight coverage with small prediction set sizes.
Furthermore, we explore the potential clinical applicability of flagging cases
with high uncertainty predictions (large prediction sets) by quantifying an
increase in the prevalence of significant imaging abnormalities (e.g. motion
artifacts, metallic artifacts, and tumors) that could degrade confidence in
predictive performance when compared to a random sample of cases.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Deep Evidential Learning for Radiotherapy Dose Prediction [0.0]
We present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction.
We found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training.
arXiv Detail & Related papers (2024-04-26T02:43:45Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Ensemble deep learning has been shown to achieve high predictive accuracy and uncertainty estimation.
perturbations in the input images at test time can still lead to significant performance degradation.
LaDiNE is a novel and robust probabilistic method that is capable of inferring informative and invariant latent variables from the input images.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without UQ.
We show that UQ thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
arXiv Detail & Related papers (2022-04-09T17:35:37Z) - Uncertainty-Aware Training for Cardiac Resynchronisation Therapy
Response Prediction [3.090173647095682]
Quantifying uncertainty of a prediction is one way to provide such interpretability and promote trust.
We quantify the data (aleatoric) and model (epistemic) uncertainty of a DL model for Cardiac Resynchronisation Therapy response prediction from cardiac magnetic resonance images.
We perform a preliminary investigation of an uncertainty-aware loss function that can be used to retrain an existing DL image-based classification model to encourage confidence in correct predictions.
arXiv Detail & Related papers (2021-09-22T10:37:50Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z) - Bayesian Modelling in Practice: Using Uncertainty to Improve Trustworthiness in Medical Applications [2.446672595462589]
The Intensive Care Unit (ICU) is a hospital department where machine learning has the potential to provide valuable assistance in clinical decision making.
In practice, uncertain predictions should be presented to doctors with extra care in order to prevent potentially catastrophic treatment decisions.
We show how Bayesian modelling and the predictive uncertainty that it provides can be used to mitigate risk of misguided prediction.
arXiv Detail & Related papers (2019-06-20T13:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.