Cooperative Distribution Alignment via JSD Upper Bound
- URL: http://arxiv.org/abs/2207.02286v1
- Date: Tue, 5 Jul 2022 20:09:03 GMT
- Title: Cooperative Distribution Alignment via JSD Upper Bound
- Authors: Wonwoong Cho, Ziyu Gong, David I. Inouye
- Abstract summary: Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution.
This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning.
We propose to unify and generalize previous flow-based approaches under a single non-adversarial framework.
- Score: 7.071749623370137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised distribution alignment estimates a transformation that maps two
or more source distributions to a shared aligned distribution given only
samples from each distribution. This task has many applications including
generative modeling, unsupervised domain adaptation, and socially aware
learning. Most prior works use adversarial learning (i.e., min-max
optimization), which can be challenging to optimize and evaluate. A few recent
works explore non-adversarial flow-based (i.e., invertible) approaches, but
they lack a unified perspective and are limited in efficiently aligning
multiple distributions. Therefore, we propose to unify and generalize previous
flow-based approaches under a single non-adversarial framework, which we prove
is equivalent to minimizing an upper bound on the Jensen-Shannon Divergence
(JSD). Importantly, our problem reduces to a min-min, i.e., cooperative,
problem and can provide a natural evaluation metric for unsupervised
distribution alignment. We present empirical results of our framework on both
simulated and real-world datasets to demonstrate the benefits of our approach.
Related papers
- Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
We introduce a novel neural entropic optimal transport method designed to learn generative models of conditional distributions.
Our method relies on the minimax training of two neural networks.
Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques.
arXiv Detail & Related papers (2024-06-04T13:45:35Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
Generalized Schr"odinger Bridge (GSB) problem setup is prevalent in many scientific areas both within and without machine learning.
We propose Generalized Schr"odinger Bridge Matching (GSBM), a new matching algorithm inspired by recent advances.
We show that such a generalization can be cast as solving conditional optimal control, for which variational approximations can be used.
arXiv Detail & Related papers (2023-10-03T17:42:11Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.